Regulation of miRNA content. Part 1. Editing miRNA. Тailing miRNA

Authors

DOI:

https://doi.org/10.22141/2224-0551.16.4.2021.236911

Keywords:

microRNA (miRNA, miR), еditing miRNA, tailing miRNA, review

Abstract

This scientific review presents the processes of regulation of miRNA content. To write the article, information was searched using Scopus, Web of Science, MedLine, PubMed, Google Scholar, EMBASE, Global Health, The Cochrane Library, CyberLeninka databases. The article presents the characteristics of the processes of microRNA editing and microRNA tailing, which regulate the content of microRNA through the transcription control. It is emphasized that editing is the most important mechanism of posttranscriptional regulation of microRNA that occurs with the help of RNA-specific adenosine deaminase. The article shows that editing leads to a change in the secondary structure of the microRNA mo­lecule and the deviation of the process of microRNA maturation. It is shown that microRNA tailing is a posttranscriptional elongation of the tail of the molecule by adding nucleotides to the 3’-end of RNA. It has been found that uridinylation is a very common posttranscriptional process that regulates gene expression. The effect of uridinylation on microRNA biogenesis has been demonstrated on the example of the miR let-7 family, which inhibits proliferation and promotes cell differentiation. It has been established that another type of microRNA tailing, namely adeny­lation, most often contri­butes to the stabilization of the molecule, but in some cases can lead to microRNA degradation. Thus, the regulation of miRNA content is carried out by editing miRNA, microRNA tailing. Due to editing, the secondary structure of the microRNA molecule changes and the microRNA maturation process deviates. MicroRNA tailing is a post-transcriptional elongation of the tail of the molecule by ad­ding nucleotides to the 3’-end of RNA by polyuridinylation or poly­a­denylation. Uridinylation affects the processing and degradation of miRNA precursors with different molecular effects, which in some cases contribute to the development of diseases.

Downloads

Download data is not yet available.

References

Bahn JH, Ahn J, Lin X, et al. Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways. Nat Commun. 2015 Mar 9;6:6355. doi:10.1038/ncomms7355.

Boele J, Persson H, Shin JW, et al. PAPD5-mediated 3' adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11467-72. doi:10.1073/pnas.1317751111.

Burroughs AM, Ando Y, de Hoon MJ, et al. A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness. Genome Res. 2010 Oct;20(10):1398-410. doi:10.1101/gr.106054.110.

Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 2009 Dec;7(4):147-54. doi:10.1016/S1672-0229(08)60044-3.

Chung CZ, Seidl LE, Mann MR, Heinemann IU. Tipping the balance of RNA stability by 3' editing of the transcriptome. Biochim Biophys Acta Gen Subj. 2017 Nov;1861(11 Pt B):2971-2979. doi:10.1016/j.bbagen.2017.05.003.

Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs' Action through miRNA Editing. Int J Mol Sci. 2019 Dec 11;20(24):6249. doi:10.3390/ijms20246249.

De Almeida C, Scheer H, Zuber H, Gagliardi D. RNA uridylation: a key posttranscriptional modification shaping the coding and noncoding transcriptome. Wiley Interdiscip Rev RNA. 2018 Jan;9(1). doi:10.1002/wrna.1440.

Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006 Feb;3(2):87-98. doi:10.1016/j.cmet.2006.01.005.

Frederick MI, Heinemann IU. Regulation of RNA stability at the 3' end. Biol Chem. 2020 Nov 27;402(4):425-431. doi:10.1515/hsz-2020-0325.

Haldipur B, Bhukya PL, Arankalle V, Lole K. Positive Regulation of Hepatitis E Virus Replication by MicroRNA-122. J Virol. 2018 May 14;92(11):e01999-17. doi:10.1128/JVI.01999-17.

Katoh T, Hojo H, Suzuki T. Destabilization of microRNAs in human cells by 3' deadenylation mediated by PARN and CUGBP1. Nucleic Acids Res. 2015 Sep 3;43(15):7521-34. doi:10.1093/nar/gkv669.

Katoh T, Hojo H, Suzuki T. Destabilization of microRNAs in human cells by 3' deadenylation mediated by PARN and CUGBP1. Nucleic Acids Res. 2015 Sep 3;43(15):7521-34. doi:10.1093/nar/gkv669.

Kim H, Kim J, Yu S, et al. A Mechanism for microRNA Arm Switching Regulated by Uridylation. Mol Cell. 2020 Jun 18;78(6):1224-1236.e5. doi:10.1016/j.molcel.2020.04.030.

King VM, Borchert GM. MicroRNA Expression: Protein Participants in MicroRNA Regulation. Methods Mol Biol. 2017;1617:27-37. doi:10.1007/978-1-4939-7046-9_2.

Koyano K, Bahn JH, Xiao X. Extracellular microRNA 3' end modification across diverse body fluids. Epigenetics. 2020 Nov 2:1-16. doi:10.1080/15592294.2020.1834922.

Lee H, Han S, Kwon CS, Lee D. Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell. 2016 Feb;7(2):100-13. doi:10.1007/s13238-015-0212-y.

Lehmann KA, Bass BL. Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities. Biochemistry. 2000 Oct 24;39(42):12875-84. doi:10.1021/bi001383g.

Liu WH, Chen CH, Yeh KH, et al. ADAR2-mediated editing of miR-214 and miR-122 precursor and antisense RNA transcripts in liver cancers. PLoS One. 2013 Dec 27;8(12):e81922. doi:10.1371/journal.pone.0081922.

Marceca GP, Distefano R, Tomasello L, et al. MiREDiBase: a manually curated database of validated and putative editing events in microRNAs. bioRxiv. 2020.09.04.283689. doi:10.1101/2020.09.04.283689.

Munoz-Tello P, Rajappa L, Coquille S, Thore S. Polyuridylation in Eukaryotes: A 3'-End Modification Regulating RNA Life. Biomed Res Int. 2015;2015:968127. doi:10.1155/2015/968127.

Nakano M, Nakajima M. Significance of A-to-I RNA editing of transcripts modulating pharmacokinetics and pharmacodynamics. Pharmacol Ther. 2018 Jan;181:13-21. doi:10.1016/j.pharmthera.2017.07.003.

Niepmann M, Shalamova LA, Gerresheim GK, Rossbach O. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication. Front Microbiol. 2018 Mar 12;9:395. doi:10.3389/fmicb.2018.00395.

Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol. 2016 Feb;17(2):83-96. doi:10.1038/nrm.2015.4.

Ota H, Sakurai M, Gupta R, et al. ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell. 2013 Apr 25;153(3):575-89. doi:10.1016/j.cell.2013.03.024.

Pashler AL, Towler BP, Jones CI, Newbury SF. The roles of the exoribonucleases DIS3L2 and XRN1 in human disease. Biochem Soc Trans. 2016 Oct 15;44(5):1377-1384. doi:10.1042/BST20160107.

Pinto Y, Buchumenski I, Levanon EY, Eisenberg E. Human cancer tissues exhibit reduced A-to-I editing of miRNAs coupled with elevated editing of their targets. Nucleic Acids Res. 2018 Jan 9;46(1):71-82. doi:10.1093/nar/gkx1176.

Scheer H, Zuber H, De Almeida C, Gagliardi D. Uridylation Earmarks mRNAs for Degradation… and More. Trends Genet. 2016 Oct;32(10):607-619. doi:10.1016/j.tig.2016.08.003.

Slezak-Prochazka I, Durmus S, Kroesen BJ, van den Berg A. MicroRNAs, macrocontrol: regulation of miRNA processing. RNA. 2010 Jun;16(6):1087-95. doi:10.1261/rna.1804410.

Song J, Song J, Mo B, Chen X. Uridylation and adenylation of RNAs. Sci China Life Sci. 2015 Nov;58(11):1057-66. doi:10.1007/s11427-015-4954-9.

Tan MH, Li Q, Shanmugam R, et al. Dynamic landscape and regulation of RNA editing in mammals. Nature. 2017 Oct 11;550(7675):249-254. doi:10.1038/nature24041.

Towler BP, Jones CI, Viegas SC, et al. The 3'-5' exoribonuclease Dis3 regulates the expression of specific microRNAs in Drosophila wing imaginal discs. RNA Biol. 2015;12(7):728-41. doi:10.1080/15476286.2015.1040978.

Wang Y, Liang H. When MicroRNAs Meet RNA Editing in Cancer: A Nucleotide Change Can Make a Difference. Bioessays. 2018 Feb;40(2):10.1002/bies.201700188. doi:10.1002/bies.201700188.

Yamada H, Ohashi K, Suzuki K, et al. Longitudinal study of circulating miR-122 in a rat model of non-alcoholic fatty liver disease. Clin Chim Acta. 2015 Jun 15;446:267-71. doi:10.1016/j.cca.2015.05.002.

Yu S, Kim VN. A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat Rev Mol Cell Biol. 2020 Sep;21(9):542-556. doi:10.1038/s41580-020-0246-8.

Zhang J, Wang Q, Zhao X, et al. MicroRNA-122 targets genes related to goose fatty liver. Poult Sci. 2018 Feb 1;97(2):643-649. doi:10.3382/ps/pex307.

Zhao S, Liu MF. Mechanisms of microRNA-mediated gene regulation. Sci China C Life Sci. 2009 Dec;52(12):1111-6. doi:10.1007/s11427-009-0152-y.

Published

2022-01-05

How to Cite

Abaturov, A., & Babуch V. (2022). Regulation of miRNA content. Part 1. Editing miRNA. Тailing miRNA. CHILD`S HEALTH, 16(4), 317–324. https://doi.org/10.22141/2224-0551.16.4.2021.236911

Issue

Section

Theoretical Medicine

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>