MiRNA biogenesis. Part 1. Maturation of pre-miRNA. Maturation of canonical miRNAs

Authors

DOI:

https://doi.org/10.22141/2224-0551.16.2.2021.229886

Keywords:

microRNA; miRNA, maturation of prі-miRNA, Argonaute (AGO) proteins, review

Abstract

The scientific review presents the biogenesis of ­miRNAs. To write the article, information was searched using databases Scopus, Web of Science, MedLine, PubMed, Google Scholar, EMBASE, Global Health, The Cochrane Library, CyberLeninka. The article presents a brief description of the RNA sequence encoding miRNAs. It is emphasized that microRNAs, depending on the location of the sequence encoding them in the genome, are divided into two major groups: canonical and non-canonical miRNAs. It has been found that a single locus of a sequence encoding a miRNA can generate a series of non-coding mature transcripts. It is noted that there are canonical and non-canonical (alternative) ways of maturation of pri-miRNAs. The canonical path of maturation of miRNAs results from the functioning of DROSHA and DICER proteins. Intranuclear processing of pri-miRNA by the DROSHA protein is revealed, which leads to the formation of pre-miRNAs transported from the cell nucleus to the cytoplasm, where under the influence of the DICER protein they are converted into duplex microRNAs. Duplex miRNAs are recruited by Argonaute (AGO) proteins, on which they are spun, and as a result one of the two strands of RNA becomes mature miRNA. Non-canonical primary miRNA transcripts can be subjected to DROSHA-, DGCR8-independent, and DICER-independent processing. The dysfunction of microprocessor proteins and nuclear export of pre-miRNAs is accompanied by the development of some human diseases. Thus, in the biogenesis of miRNAs, there are canonical and non-canonical (alternative) ways of maturation of pri-miRNAs. The canonical path of maturation of primary micro­RNA transcripts is due to the functioning of ­DROSHA and DICER proteins. The non-canonical path of maturation of pre-miRNAs is performed by DROSHA-, DGCR8-independent, and DICER-independent processing. The dysfunction of various mechanisms of the canonical path of maturation of pre-miRNA is associated with the development of some human diseases.

Downloads

Download data is not yet available.

References

Auyeung VC, Ulitsky I, McGeary SE, Bartel DP. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell. 2013 Feb 14;152(4):844-58. doi:10.1016/j.cell.2013.01.031.

Bartel DP. Metazoan MicroRNAs. Cell. 2018 Mar 22;173(1):20-51. doi:10.1016/j.cell.2018.03.006.

Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for mouse development. Nat Genet. 2003 Nov;35(3):215-7. doi:10.1038/ng1253.

Braun DA, Sadowski CE, Kohl S, et al. Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet. 2016 Apr;48(4):457-65. doi:10.1038/ng.3512.

Chang TC, Pertea M, Lee S, Salzberg SL, Mendell JT. Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms. Genome Res. 2015 Sep;25(9):1401-9. doi:10.1101/gr.193607.115.

Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020 Jan 8;48(D1):D127-D131. doi:10.1093/nar/gkz757.

Chen Z, Wu J, Yang C, et al. DiGeorge syndrome critical region 8 (DGCR8) protein-mediated microRNA biogenesis is essential for vascular smooth muscle cell development in mice. J Biol Chem. 2012 Jun 1;287(23):19018-28. doi:10.1074/jbc.M112.351791.

Creugny A, Fender A, Pfeffer S. Regulation of primary microRNA processing. FEBS Lett. 2018 Jun;592(12):1980-1996. doi:10.1002/1873-3468.13067.

Daniels SM, Gatignol A. The multiple functions of TRBP, at the hub of cell responses to viruses, stress, and cancer. Microbiol Mol Biol Rev. 2012 Sep;76(3):652-66. doi:10.1128/MMBR.00012-12.

Daniels SM, Melendez-Peña CE, Scarborough RJ, et al. Characterization of the TRBP domain required for dicer interaction and function in RNA interference. BMC Mol Biol. 2009 May 7;10:38. doi:10.1186/1471-2199-10-38.

Daugaard I, Hansen TB. Biogenesis and Function of Ago-Associated RNAs. Trends Genet. 2017 Mar;33(3):208-219. doi:10.1016/j.tig.2017.01.003.

Desvignes T, Batzel P, Berezikov E, et al. miRNA Nomenclature: A View Incorporating Genetic Origins, Biosynthetic Pathways, and Sequence Variants. Trends Genet. 2015 Nov;31(11):613-626. doi:10.1016/j.tig.2015.09.002.

Fang W, Bartel DP. The Menu of Features that Define Primary MicroRNAs and Enable De Novo Design of MicroRNA Genes. Mol Cell. 2015 Oct 1;60(1):131-45. doi:10.1016/j.molcel.2015.08.015.

Graves P, Zeng Y. Biogenesis of mammalian microRNAs: a global view. Genomics Proteomics Bioinformatics. 2012 Oct;10(5):239-45. doi:10.1016/j.gpb.2012.06.004.

Guo L, Chen F. A challenge for miRNA: multiple isomiRs in miRNAomics. Gene. 2014 Jul 1;544(1):1-7. doi:10.1016/j.gene.2014.04.039.

Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014 Aug;15(8):509-24. doi:10.1038/nrm3838.

Hand NJ, Master ZR, Le Lay J, Friedman JR. Hepatic function is preserved in the absence of mature microRNAs. Hepatology. 2009 Feb;49(2):618-26. doi:10.1002/hep.22656.

Heyam A, Lagos D, Plevin M. Dissecting the roles of TRBP and PACT in double-stranded RNA recognition and processing of noncoding RNAs. Wiley Interdiscip Rev RNA. 2015 May-Jun;6(3):271-89. doi:10.1002/wrna.1272.

Joshua-Tor L. The Argonautes. Cold Spring Harb Symp Quant Biol. 2006;71:67-72. doi:10.1101/sqb.2006.71.048.

Kim JO, Bae J, Kim J, et al. Association of MicroRNA Biogenesis Genes Polymorphisms with Ischemic Stroke Susceptibility and Post-Stroke Mortality. J Stroke. 2018 Jan;20(1):110-121. doi:10.5853/jos.2017.02586.

King VM, Borchert GM. MicroRNA Expression: Protein Participants in MicroRNA Regulation. Methods Mol Biol. 2017;1617:27-37. doi:10.1007/978-1-4939-7046-9_2.

Leisegang MS, Martin R, Ramírez AS, Bohnsack MT. Exportin t and Exportin 5: tRNA and miRNA biogenesis - and beyond. Biol Chem. 2012 Jul;393(7):599-604. doi:10.1515/hsz-2012-0146.

Li J, Chen Y, Qin X, et al. MiR-138 downregulates miRNA processing in HeLa cells by targeting RMND5A and decreasing Exportin-5 stability. Nucleic Acids Res. 2014 Jan;42(1):458-74. doi:10.1093/nar/gkt839.

Li S, Patel DJ. Drosha and Dicer: Slicers cut from the same cloth. Cell Res. 2016 May;26(5):511-2. doi:10.1038/cr.2016.19.

Liu H, Liang C, Kollipara RK, et al. HP1BP3, a Chromatin Retention Factor for Co-transcriptional MicroRNA Processing. Mol Cell. 2016 Aug 4;63(3):420-32. doi:10.1016/j.molcel.2016.06.014.

Londin E, Loher P, Telonis AG, et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):E1106-15. doi:10.1073/pnas.1420955112.

Macias S, Cordiner RA, Cáceres JF. Cellular functions of the microprocessor. Biochem Soc Trans. 2013 Aug;41(4):838-43. doi:10.1042/BST20130011.

Medley JC, Panzade G, Zinovyeva AY. microRNA strand selection: Unwinding the rules. Wiley Interdiscip Rev RNA. 2020 Sep 20:e1627. doi:10.1002/wrna.1627.

Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007 Aug 2;448(7153):553-60. doi:10.1038/nature06008.

Nguyen TA, Jo MH, Choi YG, et al. Functional Anatomy of the Human Microprocessor. Cell. 2015 Jun 4;161(6):1374-87. doi:10.1016/j.cell.2015.05.010.

Ni WJ, Leng XM. Dynamic miRNA-mRNA paradigms: New faces of miRNAs. Biochem Biophys Rep. 2015 Oct 28;4:337-341. doi:10.1016/j.bbrep.2015.10.011.

Nicholson AW. Ribonuclease III mechanisms of double-stranded RNA cleavage. Wiley Interdiscip Rev RNA. 2014 Jan-Feb;5(1):31-48. doi:10.1002/wrna.1195.

Nuovo G, Amann V, Williams J, et al. Increased expression of importin-β, exportin-5 and nuclear transportable proteins in Alzheimer's disease aids anatomic pathologists in its diagnosis. Ann Diagn Pathol. 2018 Feb;32:10-16. doi:10.1016/j.anndiagpath.2017.08.003.

Obsteter J, Dovc P, Kunej T. Genetic variability of microRNA regulome in human. Mol Genet Genomic Med. 2015 Jan;3(1):30-9. doi:10.1002/mgg3.110.

Park JE, Heo I, Tian Y, et al. Dicer recognizes the 5' end of RNA for efficient and accurate processing. Nature. 2011 Jul 13;475(7355):201-5. doi:10.1038/nature10198.

Ratnadiwakara M, Mohenska M, Änkö ML. Splicing factors as regulators of miRNA biogenesis - links to human disease. Semin Cell Dev Biol. 2018 Jul;79:113-122. doi:10.1016/j.semcdb.2017.10.008.

Robertson JC, Jorcyk CL, Oxford JT. DICER1 Syndrome: DICER1 Mutations in Rare Cancers. Cancers (Basel). 2018 May 15;10(5):143. doi:10.3390/cancers10050143.

Romero-Cordoba SL, Salido-Guadarrama I, Rodriguez-Dorantes M, Hidalgo-Miranda A. miRNA biogenesis: biological impact in the development of cancer. Cancer Biol Ther. 2014;15(11):1444-55. doi:10.4161/15384047.2014.955442.

Rostami Mogaddam M, Safavi Ardabili N, Shafaeei Y, Maleki N, Jafari N, Jafari A. Overexpression of Drosha, DiGeorge syndrome critical region gene 8 (DGCR8), and Dicer mRNAs in the pathogenesis of psoriasis. J Cosmet Dermatol. 2017 Dec;16(4):e48-e53. doi:10.1111/jocd.12336.

Song MS, Rossi JJ. Molecular mechanisms of Dicer: endonuclease and enzymatic activity. Biochem J. 2017 May 4;474(10):1603-1618. doi:10.1042/BCJ20160759.

Svobodova E, Kubikova J, Svoboda P. Production of small RNAs by mammalian Dicer. Pflugers Arch. 2016 Jun;468(6):1089-102. doi:10.1007/s00424-016-1817-6.

Tan GC, Dibb N. IsomiRs have functional importance. Malays J Pathol. 2015 Aug;37(2):73-81.

Tang R, Li L, Zhu D, et al. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res. 2012 Mar;22(3):504-15. doi:10.1038/cr.2011.137.

Tsutsumi A, Kawamata T, Izumi N, Seitz H, Tomari Y. Recognition of the pre-miRNA structure by Drosophila Dicer-1. Nat Struct Mol Biol. 2011 Sep 18;18(10):1153-8. doi:10.1038/nsmb.2125.

Vogel TW, Manjila S, Cohen AR. Novel neurodevelopmental disorder in the case of a giant occipitoparietal meningoencephalocele. J Neurosurg Pediatr. 2012 Jul;10(1):25-9. doi:10.3171/2012.3.PEDS11559.

Wen J, Gao Q, Wang N, et al. Association of microRNA-related gene XPO5 rs11077 polymorphism with susceptibility to thyroid cancer. Medicine (Baltimore). 2017 Apr;96(14):e6351. doi:10.1097/MD.0000000000006351.

Wen J, Lv Z, Ding H, Fang X, Sun M. Association of miRNA biosynthesis genes DROSHA and DGCR8 polymorphisms with cancer susceptibility: a systematic review and meta-analysis. Biosci Rep. 2018 Jun 27;38(3):BSR20180072. doi:10.1042/BSR20180072.

Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, Doudna JA. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell. 2015 Feb 5;57(3):397-407. doi:10.1016/j.molcel.2014.11.030.

Published

2021-09-10

How to Cite

Abaturov, A., & Babуch V. (2021). MiRNA biogenesis. Part 1. Maturation of pre-miRNA. Maturation of canonical miRNAs. CHILD`S HEALTH, 16(2), 200–207. https://doi.org/10.22141/2224-0551.16.2.2021.229886

Issue

Section

Theoretical Medicine

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >>