Anti-biofilm activity of anti-matrix molecules




bacterial biofilms, dispersion, anti-matrix molecules


The extracellular matrix of biofilms ensures the fixation of the biofilm on the biological surface and the protection of its bacteria from external adverse factors. The main structural component of biofilms is an extracellular polysaccharide substance. Exopolysaccharides and amyloid-like fibers are considered key molecular structures that support the three-dimensional structure of biofilms. Until recently, it was assumed that most biofilm dispersion mechanisms are associated with the functioning of matrix degrading enzymes, such as glycoside hydrolases, polysaccharide lyases, and proteases. However, it has been demonstrated that small molecules play an independent role in the process of destruction of matrix exopolysaccharides and amyloid-like fibers. Among the compounds that violate the biofilm matrix, anti-matrix molecules, compounds interacting with microdomains of the bacterial membrane and bacterial surfactants (biosurfactants) are distinguished. It has been demonstrated that compounds of these groups can inhibit the formation of biofilms and contribute to the dispersion of biofilms. From the group of anti-matrix molecules, the polyamine compound norspermidine interacts with exopolysaccharides, and the derivatives of benzoquinone AA-861 and sesquiterpene lactone parthenolide interact with TasA-amyloid-like fibers. Norspermidine prevents the formation and dispersion of biofilms of various bacteria, including Acinetobacter baumannii, Bacillus subtili, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphy­lococcus aureus, Staphylococcus epidermidis. Compound AA-861 is active against biofilms, which are formed by the bacteria Streptococcus mutans, Bacillus cereus, Escherichia coli. Parthenolide disperses biofilms formed by Escherichia coli and Bacillus cereus. Zaragozic acid, interacting with microdomains of the bacterial membrane, disruptі the functioning of raft-associated bacterial proteins. Small anti-matrix molecules and bacterial membranes aimed at microdomains that initiate biofilm dispersion will certainly become the basis for the development of effective antibiofilm therapeutic drugs.


Download data is not yet available.


Bergstrom JD, Kurtz MM, Rew DJ, et al. Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):80-4. doi: 10.1073/pnas.90.1.80.

Besingi RN, Wenderska IB, Senadheera DB, et al. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c. Microbiology. 2017 Apr;163(4):488-501. doi: 10.1099/mic.0.000443.

Blanco LP, Evans ML, Smith DR, Badtke MP, Chapman MR. Diversity, biogenesis and function of microbial amyloids. Trends Microbiol. 2012 Feb;20(2):66-73. doi: 10.1016/j.tim.2011.11.005.

Boncher T, Bi X, Varghese S, Casero RA Jr, Woster PM. Polyamine-based analogues as biochemical probes and potential therapeutics. Biochem Soc Trans. 2007 Apr;35(Pt 2):356-63. doi: 10.1042/BST0350356.

Böttcher T, Kolodkin-Gal I, Kolter R, Losick R, Clardy J. Synthesis and activity of biomimetic biofilm disruptors. J Am Chem Soc. 2013 Feb 27;135(8):2927-30. doi: 10.1021/ja3120955.

Cardile AP, Woodbury RL, Sanchez CJ Jr, et al. Activity of Norspermidine on Bacterial Biofilms of Multidrug-Resistant Clinical Isolates Associated with Persistent Extremity Wound Infections. Adv Exp Med Biol. 2017;973:53-70. doi: 10.1007/5584_2016_93.

Duanis-Assaf D, Duanis-Assaf T, Zeng G, et al. Cell wall associated protein TasA provides an initial binding component to extracellular polysaccharides in dual-species biofilm. Sci Rep. 2018 Jun 19;8(1):9350. doi: 10.1038/s41598-018-27548-1.

Erskine E, MacPhee CE, Stanley-Wall NR. Functional Amyloid and Other Protein Fibers in the Biofilm Matrix. J Mol Biol. 2018 Oct 12;430(20):3642-3656. doi: 10.1016/j.jmb.2018.07.026.

Evans ML, Gichana E, Zhou Y, Chapman MR. Bacterial Amyloids. Methods Mol Biol. 2018;1779:267-288. doi: 10.1007/978-1-4939-7816-8_17.

Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010 Sep;8(9):623-33. doi: 10.1038/nrmicro2415.

Hobley L, Kim SH, Maezato Y, Wyllie S, Fairlamb AH, Stanley-Wall NR, Michael AJ Norspermidine is not a self-produced trigger for biofilm disassembly. Cell. 2014 Feb 13;156(4):844-54. doi: 10.1016/j.cell.2014.01.012.

Jamal M, Ahmad W, Andleeb S, et al. Bacterial biofilm and associated infections. Chin Med Assoc. 2018 Jan;81(1):7-11. doi: 10.1016/j.jcma.2017.07.012.

Kalia M, Yadav VK, Singh PK, Sharma D, Narvi SS, Agarwal V. Exploring the impact of parthenolide as anti-quorum sensing and anti-biofilm agent against Pseudomonas aeruginosa. Life Sci. 2018 Apr 15;199:96-103. doi: 10.1016/j.lfs.2018.03.013.

Kolodkin-Gal I, Cao S, Chai L, Böttcher T, Kolter R, Clardy J, Losick R. A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell. 2012 Apr 27;149(3):684-92. doi: 10.1016/j.cell.2012.02.055.

Konai MM, Adhikary U, Samaddar S, Ghosh C, Haldar J. Structure-Activity Relationship of Amino Acid Tunable Lipidated Norspermidine Conjugates: Disrupting Biofilms with Potent Activity against Bacterial Persisters. Bioconjug Chem. 2015 Dec 16;26 (12):2442-53. doi: 10.1021/acs.bioconjchem.5b00494.

Li HY, Appelbaum FR, Willman CL, Zager RA, Banker DE. Cholesterol-modulating agents kill acute myeloid leukemia cells and sensitize them to therapeutics by blocking adaptive cholesterol responses. Blood. 2003 May 1;101(9):3628-34.

Li L, Liu YR, Gao S, et al. Inhibition of 5-lipoxygenase pathway attenuates acute liver failure by inhibiting macrophage activation. J Immunol Res. 2014;2014:697560. doi: 10.1155/2014/697560.

Liu CI, Jeng WY, Chang WJ, Ko TP, Wang AH. Binding modes of zaragozic acid A to human squalene synthase and staphylococcal dehydrosqualene synthase. J Biol Chem. 2012 May 25;287(22):18750-7. doi: 10.1074/jbc.M112.351254.

Lopez D, Koch G. Exploring functional membrane microdomains in bacteria: an overview. Curr Opin Microbiol. 2017 Apr;36:76-84. doi: 10.1016/j.mib.2017.02.001.

López D, Kolter R. Functional microdomains in bacterial membranes. Genes Dev. 2010 Sep 1;24(17):1893-902. doi: 10.1101/gad.1945010.

Lyons SM, Anderson P. RNA-Seeded Functional Amyloids Balance Growth and Survival. Dev Cell. 2016 Oct 24;39(2):131-132. doi: 10.1016/j.devcel.2016.10.005.

Mathema VB, Koh YS, Thakuri BC, Sillanpää M. Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation. 2012 Apr;35(2):560-5. doi: 10.1007/s10753-011-9346-0.

Maunders E, Welch M. Matrix exopolysaccharides; the sticky side of biofilm formation. FEMS Microbiol Lett. 2017 Jul 6;364(13):fnx120. doi: 10.1093/femsle/fnx120.

Michael AJ. Polyamine function in archaea and bacteria. J Biol Chem. 2018 Nov 30;293(48):18693-18701. doi: 10.1074/jbc.TM118.005670.

Michael AJ. Polyamines in Eukaryotes, Bacteria, and Archaea. J Biol Chem. 2016 Jul 15;291(29):14896-903. doi: 10.1074/jbc.R116.734780.

Nesse LL, Berg K, Vestby LK. Effects of norspermidine and spermidine on biofilm formation by potentially pathogenic Escherichia coli and Salmonella enterica wild-type strains. Appl Environ Microbiol. 2015 Mar;81(6):2226-32. doi: 10.1128/AEM.03518-14.

Nishio T, Yoshikawa Y, Shew CY, Umezawa N, Higuchi T, Yoshikawa K. Specific effects of antitumor active norspermidine on the structure and function of DNA. Sci Rep. 2019 Oct 18;9(1):14971. doi: 10.1038/s41598-019-50943-1.

Oppenheimer-Shaanan Y, Steinberg N, Kolodkin-Gal I. Small molecules are natural triggers for the disassembly of biofilms. Trends Microbiol. 2013 Nov;21(11):594-601. doi: 10.1016/j.tim.2013.08.005.

Otto M. Phenol-soluble modulins. Int J Med Microbiol. 2014 Mar;304(2):164-9. doi: 10.1016/j.ijmm.2013.11.019.

Ou M, Ling J. Norspermidine changes the basic structure of S. mutans biofilm. Mol Med Rep. 2017 Jan;15(1):210-220. doi: 10.3892/mmr.2016.5979.

Qu L, She P, Wang Y, Liu F, Zhang D, Chen L, Luo Z, Xu H, Qi Y, Wu Y. Effects of norspermidine on Pseudomonas aeruginosa biofilm formation and eradication. Microbiologyopen. 2016 Jun;5(3):402-12. doi: 10.1002/mbo3.338.

Ramón-Peréz ML, Díaz-Cedillo F, Contreras-Rodríguez A, et al. Different sensitivity levels to norspermidine on biofilm formation in clinical and commensal Staphylococcus epidermidis strains. Microb Pathog. 2015 Feb;79:8-16. doi: 10.1016/j.micpath.2014.12.004.

Romero D, Sanabria-Valentín E, Vlamakis H, Kolter R. Biofilm inhibitors that target amyloid proteins. Chem Biol. 2013 Jan 24;20(1):102-10. doi: 10.1016/j.chembiol.2012.10.021.

Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog. 2012;8(6):e1002744. doi: 10.1371/journal.ppat.1002744.

Taleghani A, Nasseri MA, Iranshahi M. Synthesis of dual-action parthenolide prodrugs as potent anticancer agents. Bioorg Chem. 2017 Apr;71:128-134. doi: 10.1016/j.bioorg.2017.01.020.

Van Gerven N, Klein RD, Hultgren SJ, Remaut H. Bacterial amyloid formation: structural insights into curli biogenesis. Trends Microbiol. 2015 Nov;23(11):693-706. doi: 10.1016/j.tim.2015.07.010.

Wagner RM, Kricks L, Lopez D. Functional Membrane Microdomains Organize Signaling Networks in Bacteria. J Membr Biol. 2017 Aug;250(4):367-378. doi: 10.1007/s00232-016-9923-0.

Wang M, Li Q. Parthenolide could become a promising and stable drug with anti-inflammatory effects. Nat Prod Res. 2015;29(12):1092-101. doi: 10.1080/14786419.2014.981541.

Wang Y, Kadiyala U, Qu Z, et al. Anti-Biofilm Activity of Graphene Quantum Dots via Self-Assembly with Bacterial Amyloid Proteins. ACS Nano. 2019 Apr 23;13(4):4278-4289. doi: 10.1021/acsnano.8b09403.

Zhou Y, Blanco LP, Smith DR, Chapman MR. Bacterial amyloids. Methods Mol Biol. 2012;849:303-20. doi: 10.1007/978-1-61779-551-0_21.




How to Cite

Abaturov А. (2021). Anti-biofilm activity of anti-matrix molecules. CHILD`S HEALTH, 15(8), 559–566.



Theoretical Medicine

Most read articles by the same author(s)

<< < 1 2 3