Modern neuroprotection in pediatrics

Authors

DOI:

https://doi.org/10.22141/2224-0551.15.6.2020.215531

Keywords:

children, neuroprotection, Kogivis, Silenta

Abstract

The article deals with the main mechanisms of neuroprotectors action and modern strategies of neuroprotection. It is proved that the effectiveness of neuroprotectors is primarily due to the anti-excitotoxic effect, interruption of rapid reactions of the glutamate-calcium cascade, blockade of pro-inflammatory cytokines and adhesion molecules, inhibition of pro-oxidant enzymes, increased trophic supply, prevention of apoptosis. The neuroprotective properties of complex drugs Silenta and Kogivis are described. Their high efficiency in pediatrics is due to the potentiation of the action of their components, and safety is due to the low doses of each of the components.

Downloads

Download data is not yet available.

References

Kyrylova LG, Miroshnykov OO. Neuroprotective therapy for neurological lesions in young children with pre- and perinatal pathology. Ukrainian Medical Journal. 2015;(108):37-42. (in Ukrainian).

Svistilnik ТV. Phenomenon exitotoxicity. Occurrence mechanisms, value in development neuronal of damage and possibility of its correction at pathologies CNS. Biomedical and biosocial anthropology. 2013;(20):207-215. (in Ukrainian).

Messina F, Cecconi F, Rodolfo C. Do You Remember Mitochondria? Front Physiol. 2020 Mar 27;11:271. doi:10.3389/fphys.2020.00271.

Putilina MV. Combined neuroprotective treatment of acute brain hemodynamics disturbances. Moscow, Russia. Ukraijnsʹkij zhurnal ekstremalʹnoji medicini imeni GO Mozhaeva. 2011;12(3):112-121. (in Russian).

Chang RCC, Ho YS. Introductory Chapter: Concept of Neuroprotection - A New Perspective. In: Chang RCC, Ho YS, Aryati WD, et al., authors; Chang RCC, Ho YS, editors. Neuroprotection. London: IntechOpen; 2019. doi:10.5772/intechopen.85631.

Frolova NIu, Buriakina AV, Mel'nikova TI. Neuroprotective agents in pediatric practice. Remedium. 2015;(9);54-60. (in Russian).

Nielsen FH. Magnesium deficiency and increased inflammation: current perspectives. J Inflamm Res. 2018 Jan 18;11:25-34. doi:10.2147/JIR.S136742.

Vink R, Nechifor M, editors. Magnesium in the central nervous system. Adelaide, Australia: University of Adelaide Press; 2011. 356 p. doi:10.1017/UPO9780987073051.

Chollat C, Sentilhes L, Marret S. Protection of brain development by antenatal magnesium sulphate for infants born preterm. Dev Med Child Neurol. 2019 Jan;61(1):25-30. doi:10.1111/dmcn.14038.

Galinsky R, Dean JM, Lingam I, et al. A Systematic Review of Magnesium Sulfate for Perinatal Neuroprotection: What Have We Learnt From the Past Decade? Front Neurol. 2020 May 27;11:449. doi:10.3389/fneur.2020.00449.

McNally MA, Soul JS. Pharmacologic Prevention and Treatment of Neonatal Brain Injury. Clin Perinatol. 2019 Jun;46(2):311-325. doi:10.1016/j.clp.2019.02.006.

Tsakiridis I, Mamopoulos A, Athanasiadis A, Dagklis T. Antenatal Corticosteroids and Magnesium Sulfate for Improved Preterm Neonatal Outcomes: A Review of Guidelines. Obstet Gynecol Surv. 2020 May;75(5):298-307. doi:10.1097/OGX.0000000000000778.

Wolf HT, Huusom LD, Henriksen TB, Hegaard HK, Brok J, Pinborg A. Magnesium sulphate for fetal neuroprotection at imminent risk for preterm delivery: a systematic review with meta-analysis and trial sequential analysis. BJOG. 2020 Sep;127(10):1180-1188. doi:10.1111/1471-0528.16238.

Fitsner OA, Khaitovych MV. A quantum-pharmacological study of melatonin’s antioxidant properties. Pharmacology and Drug Toxicology. 2017;55(4-5):89-95. (in Ukrainian).

Fitsner OA, Khaitovych MV, Rizhko IM, Holopicho LI. The effect of melatonin and N-acetylcysteine on the state of the orientation research activity in rats under conditions of the experimental diabetes mellitus. Clinical Pharmacy. 2018;(3):38-45. (in Ukrainian).

Temirova O, Khaitovych M, Burlaka A, Vovk A. Redox-dependent mechanisms of brain neuroprotection of rats with experimental diabetes mellitus. ScienceRise: Pharmaceutical Science. 2018;(15):39-46. doi:10.15587/2519-4852.2018.145725.

Che DN, Cho BO, Kim JS, Shin JY, Kang HJ, Jang SI. Luteolin and Apigenin Attenuate LPS-Induced Astrocyte Activation and Cytokine Production by Targeting MAPK, STAT3, and NF-κB Signaling Pathways. Inflammation. 2020 Oct;43(5):1716-1728. doi:10.1007/s10753-020-01245-6.

Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J Ethnopharmacol. 2018 Oct 28;225:342-358. doi:10.1016/j.jep.2018.05.019.

Park HS, Lee K, Kim SH, Hong MJ, Jeong NJ, Kim MS. Luteolin improves hypercholesterolemia and glucose intolerance through LXRα-dependent pathway in diet-induced obese mice. J Food Biochem. 2020 Jun 29:e13358. doi:10.1111/jfbc.13358.

Yahyazadeh A, Altunkaynak BZ. Neuroprotective efficacy of luteolin on a 900-MHz electromagnetic field-induced cerebellar alteration in adult male rat. Brain Res. 2020 Oct 1;1744:146919. doi:10.1016/j.brainres.2020.146919.

Baty RS, Hassan KE, Alsharif KF, et al. Neuroprotective role of luteolin against lead acetate-induced cortical damage in rats. Hum Exp Toxicol. 2020 Sep;39(9):1200-1212. doi:10.1177/0960327120913094.

Sedighi M, Faghihi M, Rafieian-Kopaei M, Rasoulian B, Nazari A. Cardioprotective Effect of Ethanolic Leaf Extract of Melissa Officinalis L Against Regional Ischemia-Induced Arrhythmia and Heart Injury after Five Days of Reperfusion in Rats. Iran J Pharm Res. 2019 Summer;18(3):1530-1542. doi:10.22037/ijpr.2019.1100761.

Heshmati J, Morvaridzadeh M, Sepidarkish M, et al. Effects of Melissa officinalis (Lemon Balm) on cardio-metabolic outcomes: A systematic review and meta-analysis. Phytother Res. 2020 Jul 2. doi:10.1002/ptr.6744.

Borgonetti V, Governa P, Biagi M, Galeotti N. Novel Therapeutic Approach for the Management of Mood Disorders: In Vivo and In Vitro Effect of a Combination of L-Theanine, Melissaofficinalis L. and Magnolia officinalis Rehder & E.H. Wilson. Nutrients. 2020 Jun 17;12(6):1803. doi:10.3390/nu12061803.

Almeida MR, Mabasa L, Crane C, et al. Maternal vitamin B6 deficient or supplemented diets on expression of genes related to GABAergic, serotonergic, or glutamatergic pathways in hippocampus of rat dams and their offspring. Mol Nutr Food Res. 2016 Jul;60(7):1615-24. doi:10.1002/mnfr.201500950.

Kumar N. Nutrients and Neurology. Continuum (Minneap Minn). 2017 Jun;23(3, Neurology of Systemic Disease):822-861. doi:10.1212/01.CON.0000520630.69195.90.

Szymańska K, Kuśmierska K, Demkow U. Inherited disorders of brain neurotransmitters: pathogenesis and diagnostic approach. Adv Exp Med Biol. 2015;837:1-8. doi:10.1007/5584_2014_86.

Dakshinamurti S, Dakshinamurti K. Antihypertensive and neuroprotective actions of pyridoxine and its derivatives. Can J Physiol Pharmacol. 2015 Dec;93(12):1083-90. doi:10.1139/cjpp-2015-0098.

Abraham PM, Kuruvilla KP, Mathew J, Malat A, Joy S, Paulose CS. Alterations in hippocampal serotonergic and INSR function in streptozotocin induced diabetic rats exposed to stress: neuroprotective role of pyridoxine and Aegle marmelose. J Biomed Sci. 2010 Sep 25;17(1):78. doi:10.1186/1423-0127-17-78.

Wei Y, Lu M, Mei M, et al. Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun. 2020 Feb 18;11(1):941. doi:10.1038/s41467-020-14788-x.

Coqueiro AY, Rogero MM, Tirapegui J. Glutamine as an Anti-Fatigue Amino Acid in Sports Nutrition. Nutrients. 2019 Apr 17;11(4):863. doi:10.3390/nu11040863.

Shah AM, Wang Z, Ma J. Glutamine Metabolism and Its Role in Immunity, a Comprehensive Review. Animals (Basel). 2020 Feb 19;10(2):326. doi:10.3390/ani10020326.

Ramezani Ahmadi A, Rayyani E, Bahreini M, Mansoori A. The effect of glutamine supplementation on athletic performance, body composition, and immune function: A systematic review and a meta-analysis of clinical trials. Clin Nutr. 2019 Jun;38(3):1076-1091. doi:10.1016/j.clnu.2018.05.001.

Petry ÉR, Cruzat VF, Heck TG, Homem de Bittencourt PI Jr, Tirapegui J. L-glutamine supplementations enhance liver glutamine-glutathione axis and heat shock factor-1 expression in endurance-exercise trained rats. Int J Sport Nutr Exerc Metab. 2015 Apr;25(2):188-97. doi:10.1123/ijsnem.2014-0131.

Raizel R, Leite JS, Hypólito TM, et al. Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise. Br J Nutr. 2016 Aug;116(3):470-9. doi:10.1017/S0007114516001999.

Berndsen CE, Wiener R, Yu IW, Ringel AE, Wolberger C. A conserved asparagine has a structural role in ubiquitin-conjugating enzymes. Nat Chem Biol. 2013 Mar;9(3):154-6. doi:10.1038/nchembio.1159.

El-Hattab AW. Serine biosynthesis and transport defects. Mol Genet Metab. 2016 Jul;118(3):153-9. doi:10.1016/j.ymgme.2016.04.010.

Tabatabaie L, Klomp LW, Berger R, de Koning TJ. L-serine synthesis in the central nervous system: a review on serine deficiency disorders. Mol Genet Metab. 2010 Mar;99(3):256-62. doi:10.1016/j.ymgme.2009.10.012.

Kvashnina LV, Majdan IS, Ignatova TB. Possible ways to correct disorders of autonomic homeostasis in primary school children. Zdorov`e rebenka. 2019;14(2):2-7. (in Ukrainian).

Published

2021-09-10

How to Cite

Khaitovych, M. (2021). Modern neuroprotection in pediatrics. CHILD`S HEALTH, 15(6), 450–455. https://doi.org/10.22141/2224-0551.15.6.2020.215531

Issue

Section

To Help the Pediatrician