Nucleases that degrade extracellular DNA of bacterial biofilms

Authors

DOI:

https://doi.org/10.22141/2224-0551.15.5.2020.211450

Keywords:

bacterial biofilms, dispersion, DNases

Abstract

Extracellular bacterial DNA (eDNA) is actively involved in the formation and vital activity of biofilms, acting as a major structural component of the matrix. The release of eDNA into the biofilm continuum is due to bacterial cell lysis and active secretion by a lysis-independent mechanism. Molecules of eDNA are present in species-specific amounts in biofilms of different microorganisms and are organized as clear morphological formations forming mesh structures or filamentous networks. The importance of eDNA in maintaining matrix stability is particularly high in the early stages of biofilm development. EDNA is involved in biofilms: as a factor contributing to bacterial adhesion, biofilm formation, and extracellular matrix production; as a structural component in ensuring matrix stability; as a substrate for the process of gene transfer through transformation of competent sister bacteria; as a nutrient and as a protective factor of bacterial biofilms. Reducing the content of eDNA destabilizes the matrix, which promotes the release of bacteria from biofilms and, as a consequence, increases the sensitivity of pathogens to the action of antibacterial agents. Clea­vage of eDNA molecules by DNase is one of the ways of degradation of the biofilm matrix and overcoming bacterial antibiotic resistance associated with biofilm formation. It has been shown that DNases, in particular DNase I, DNase 1L2, NucB nuclease, effectively destroy young biofilms of different Gram-negative and Gram-positive bacteria. Currently, DNases are considered as possible models of future antibiofilm drugs. Given the lack of long-term activity and the limited depth of penetration in the dispersion of biofilms of these drugs, a nanotechnological DNA mimetic artificial enzyme was developed and synthesized, which has a high level of DNase-like antibiofilm activity. In the clinical practice, highly purified human recombinant DNase I — dornase alpha — is being successfully used in the treatment of infections in patients with cystic fibrosis.

Downloads

Download data is not yet available.

References

Arenas J, Tommassen J. Meningococcal Biofilm Formation: Let's Stick Together. Trends Microbiol. 2017;25(2):113-124. doi:10.1016/j.tim.2016.09.005.

Chen Z, Ji H, Liu C, Bing W, Wang Z, Qu X. A Multinuclear Metal Complex Based DNase-Mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms. Angew Chem Int Ed Engl. 2016;55(36):10732-10736. doi:10.1002/anie.201605296.

Chen Z, Ji H, Liu C, Bing W, Wang Z, Qu X. A Multinuclear Metal Complex Based DNase-Mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms. Angew Chem Int Ed Engl. 2016;55(36):10732-10736. doi:10.1002/anie.201605296.

Chiang WC, Nilsson M, Jensen PØ, et al. Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2013;57(5):2352-2361. doi:10.1128/AAC.00001-13.

Das T, Sehar S, Koop L, et al. Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation. PLoS One. 2014;9(3):e91935. doi:10.1371/journal.pone.0091935.

Das T, Sharma PK, Busscher HJ, van der Mei HC, Krom BP. Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol. 2010;76(10):3405-3408. doi:10.1128/AEM.03119-09.

Eckhart L, Fischer H, Barken KB, Tolker-Nielsen T, Tschachler E. DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus. Br J Dermatol. 2007;156(6):1342-1345. doi:10.1111/j.1365-2133.2007.07886.x.

Fleming D, Rumbaugh KP. Approaches to Dispersing Medical Biofilms. Microorganisms. 2017;5(2):15. doi:10.3390/microorganisms5020015.

Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563-575. doi:10.1038/nrmicro.2016.94.

Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623-633. doi:10.1038/nrmicro2415.

Gbejuade HO, Lovering AM, Webb JC. The role of microbial biofilms in prosthetic joint infections. Acta Orthop. 2015;86(2):147-158. doi:10.3109/17453674.2014.966290.

Gloag ES, Elbadawi C, Zachreson CJ, et al. Micro-Patterned Surfaces That Exploit Stigmergy to Inhibit Biofilm Expansion. Front Microbiol. 2017;7:2157. doi:10.3389/fmicb.2016.02157.

Gloag ES, Turnbull L, Huang A, et al. Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci U S A. 2013;110(28):11541-11546. doi:10.1073/pnas.1218898110.

Goodman SD, Obergfell KP, Jurcisek JA, et al. Biofilms can be dispersed by focusing the immune system on a common family of bacterial nucleoid-associated proteins. Mucosal Immunol. 2011;4(6):625-637. doi:10.1038/mi.2011.27.

Ibáñez de Aldecoa AL, Zafra O, González-Pastor JE. Mechanisms and Regulation of Extracellular DNA Release and Its Biological Roles in Microbial Communities. Front Microbiol. 2017;8:1390. doi:10.3389/fmicb.2017.01390.

Jennings LK, Storek KM, Ledvina HE, et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci U S A. 2015;112(36):11353-11358. doi:10.1073/pnas.1503058112.

Kaplan JB. Biofilm matrix-degrading enzymes. Methods Mol Biol. 2014;1147:203-213. doi:10.1007/978-1-4939-0467-9_14.

Lennon JT. Diversity and metabolism of marine bacteria cultivated on dissolved DNA. Appl Environ Microbiol. 2007;73(9):2799-2805. doi:10.1128/AEM.02674-06.

Li XH, Lee JH. Antibiofilm agents: A new perspective for antimicrobial strategy. J Microbiol. 2017;55(10):753-766. doi:10.1007/s12275-017-7274-x.

Liu J, Sun L, Liu W, et al. A Nuclease from Streptococcus mutans Facilitates Biofilm Dispersal and Escape from Killing by Neutrophil Extracellular Traps. Front Cell Infect Microbiol. 2017;7:97. doi:10.3389/fcimb.2017.00097.

Marmont LS, Whitfield GB, Rich JD, et al. PelA and PelB proteins form a modification and secretion complex essential for Pel polysaccharide-dependent biofilm formation in Pseudomonas aeruginosa. J Biol Chem. 2017;292(47):19411-19422. doi:10.1074/jbc.M117.812842.

Merod RT, Wuertz S. Extracellular polymeric substance architecture influences natural genetic transformation of Acinetobacter baylyi in biofilms. Appl Environ Microbiol. 2014;80(24):7752-7757. doi:10.1128/AEM.01984-14.

Moormeier DE, Bose JL, Horswill AR, Bayles KW. Temporal and stochastic control of Staphylococcus aureus biofilm development. mBio. 2014;5(5):e01341-14. doi:10.1128/mBio.01341-14.

Nagler M, Insam H, Pietramellara G, Ascher-Jenull J. Extracellular DNA in natural environments: features, relevance and applications. Appl Microbiol Biotechnol. 2018;102(15):6343-6356. doi:10.1007/s00253-018-9120-4.

Nair A, Perry A, Perry JD, Gould FK, Samuel J. In vitro effects of combined iron chelation, antibiotics and matrix disruption on clinical isolates of Pseudomonas aeruginosa. J Antimicrob Chemother. 2020;75(3):586-592. doi:10.1093/jac/dkz505.

Nemoto K, Hirota K, Murakami K, et al. Effect of Varidase (streptodornase) on biofilm formed by Pseudomonas aeruginosa. Chemotherapy. 2003;49(3):121-125. doi:10.1159/000070617.

Nijland R, Hall MJ, Burgess JG. Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS One. 2010;5(12):e15668. doi:10.1371/journal.pone.0015668.

Okshevsky M, Meyer RL. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit Rev Microbiol. 2015;41(3):341-352. doi:10.3109/1040841X.2013.841639.

Okshevsky M, Regina VR, Meyer RL. Extracellular DNA as a target for biofilm control. Curr Opin Biotechnol. 2015;33:73-80. doi:10.1016/j.copbio.2014.12.002.

Piepenbrink KH. DNA Uptake by Type IV Filaments. Front Mol Biosci. 2019;6:1. doi:10.3389/fmolb.2019.00001.

Rose SJ, Bermudez LE. Identification of Bicarbonate as a Trigger and Genes Involved with Extracellular DNA Export in Mycobacterial Biofilms. mBio. 2016;7(6):e01597-16. doi:10.1128/mBio.01597-16.

Salter I. Seasonal variability in the persistence of dissolved environmental DNA (eDNA) in a marine system: The role of microbial nutrient limitation. PLoS One. 2018;13(2):e0192409. doi:10.1371/journal.pone.0192409.

Senpuku H, Mohri S, Mihara M, Arai T, Suzuki Y, Saeki Y. Effects of 7S globulin 3 derived from the adzuki bean [Vigna angularis] on the CSP- and eDNA- dependent biofilm formation of Streptococcus mutans. Arch Oral Biol. 2019;102:256-265. doi:10.1016/j.archoralbio.2019.04.010.

Seper A, Fengler VH, Roier S, et al. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol Microbiol. 2011;82(4):1015-1037. doi:10.1111/j.1365-2958.2011.07867.x.

Sharma P, Garg N, Sharma A, Capalash N, Singh R. Nucleases of bacterial pathogens as virulence factors, therapeutic targets and diagnostic markers. Int J Med Microbiol. 2019;309(8):151354. doi:10.1016/j.ijmm.2019.151354.

Shields RC, Mokhtar N, Ford M, et al. Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis. PLoS One. 2013;8(2):e55339. doi:10.1371/journal.pone.0055339.

Southern KW, Clancy JP, Ranganathan S. Aerosolized agents for airway clearance in cystic fibrosis. Pediatr Pulmonol. 2019;54(6):858-864. doi:10.1002/ppul.24306.

Tan A, Li WS, Verderosa AD, et al. Moraxella catarrhalis NucM is an entry nuclease involved in extracellular DNA and RNA degradation, cell competence and biofilm scaffolding. Sci Rep. 2019;9(1):2579. doi:10.1038/s41598-019-39374-0.

Tetz V, Tetz G. Bacterial DNA induces the formation of heat-resistant disease-associated proteins in human plasma. Sci Rep. 2019;9(1):17995. doi:10.1038/s41598-019-54618-9.

Ueki M, Takeshita H, Kimura-Kataoka K, Fujihara J, Iida R, Yasuda T. Identification of functional SNPs potentially served as a genetic risk factor for the pathogenesis of parakeratosis in the gene encoding human deoxyribonuclease I-like 2 (DNase 1L2) implicated in terminal differentiation of keratinocytes. Gene. 2015;561(1):15-22. doi:10.1016/j.gene.2015.01.006.

Vorkapic D, Pressler K, Schild S. Multifaceted roles of extracellular DNA in bacterial physiology. Curr Genet. 2016;62(1):71-79. doi:10.1007/s00294-015-0514-x.

Wagener JS, Kupfer O. Dornase alfa (Pulmozyme). Curr Opin Pulm Med. 2012;18(6):609-614. doi:10.1097/MCP.0b013e328358d51f.

Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science. 2002;295(5559):1487. doi:10.1126/science.295.5559.1487.

Yang C, Chilvers M, Montgomery M, Nolan SJ. Dornase alfa for cystic fibrosis. Cochrane Database Syst Rev. 2016;4:CD001127. doi:10.1002/14651858.CD001127.pub3.

Yang C, Montgomery M. Dornase alfa for cystic fibrosis. Cochrane Database Syst Rev. 2018;9(9):CD001127. doi:10.1002/14651858.CD001127.pub4.

Ye J, Shao C, Zhang X, et al. Effects of DNase I coating of titanium on bacteria adhesion and biofilm formation. Mater Sci Eng C Mater Biol Appl. 2017;78:738-747. doi:10.1016/j.msec.2017.04.078.

Zhu X, Dordet-Frisoni E, Gillard L, et al. Extracellular DNA: A Nutritional Trigger of Mycoplasma bovis Cytotoxicity. Front Microbiol. 2019;10:2753. doi:10.3389/fmicb.2019.02753.

Downloads

Published

2021-09-10

How to Cite

Abaturov А. (2021). Nucleases that degrade extracellular DNA of bacterial biofilms. CHILD`S HEALTH, 15(5), 389–398. https://doi.org/10.22141/2224-0551.15.5.2020.211450

Issue

Section

Theoretical Medicine