Opportunities of prevention of asthma exacerbation induced by respiratory infection in children using bacterial lysates

Authors

  • T.R. Umanets State Institution “Lukyanova Institute of Pediatrics, Obstetrics and Gynecology of NAMS of Ukraine”, Kyiv, Ukraine http://orcid.org/0000-0001-9058-7383
  • V.F. Lapshyn State Institution “Lukyanova Institute of Pediatrics, Obstetrics and Gynecology of NAMS of Ukraine”, Kyiv, Ukraine http://orcid.org/0000-0003-1896-1865
  • О.О. Rudnev State Institution “Lukyanova Institute of Pediatrics, Obstetrics and Gynecology of NAMS of Ukraine”, Kyiv, Ukraine

DOI:

https://doi.org/10.22141/2224-0551.15.5.2020.211451

Keywords:

asthma, infection, children, bacterial mechanical lysates

Abstract

The infectious factor is known to play an important role not only as a trigger for asthma exacerbation, but also an essential factor for the formation of the disease. Children with asthma are 6.2 times more likely to have acute respiratory diseases than healthy children. This is due to altered barrier function of the respiratory epithelium and immune antiviral responses. Viruses dominate in the etiological structure of infectious-dependent exacerbations of asthma. The preclinical and clinical studies have shown the effectiveness of an immunomodulatory strategy for the prevention of recurrent respiratory infections in children with asthma using bacterial mechanical lysates.

Downloads

Download data is not yet available.

References

Antypkin YuG, Chumachenko NG, Umanets TR, Lapshyn VF. Analysis of morbidity and prevalence of bronchial asthma among children from different age groups and regions in Ukraine. Perinatologiya i pediatriya. 2016;(65):95-99. doi:10.15574/PP.2016.65.95. (in Ukrainian).

Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention 2020. Fontana, WI: GINA; 2020. 211 p.

Holt PG, Strickland DH, Sly PD. Virus infection and allergy in the development of asthma: what is the connection? Curr Opin Allergy Clin Immunol. 2012;12(2):151-157. doi:10.1097/ACI.0b013e3283520166.

Tschernig T, Debertin AS, Paulsen F, Kleemann WJ, Pabst R. Dendritic cells in the mucosa of the human trachea are not regularly found in the first year of life. Thorax. 2001;56(6):427-431. doi:10.1136/thorax.56.6.427.

Liu YJ. Thymic stromal lymphopoietin and OX40 ligand pathway in the initiation of dendritic cell-mediated allergic inflammation. J Allergy Clin Immunol. 2007;120(2):238-246. doi:10.1016/j.jaci.2007.06.004.

Rochman Y, Leonard WJ. Thymic stromal lymphopoietin: a new cytokine in asthma. Curr Opin Pharmacol. 2008;8(3):249-254. doi:10.1016/j.coph.2008.03.002.

Liu L, Pan Y, Zhu Y, et al. Association between rhinovirus wheezing illness and the development of childhood asthma: a meta-analysis. BMJ Open. 2017;7(4):e013034. doi:10.1136/bmjopen-2016-013034.

Lukkarinen M, Koistinen A, Turunen R, Lehtinen P, Vuorinen T, Jartti T. Rhinovirus-induced first wheezing episode predicts atopic but not nonatopic asthma at school age. J Allergy Clin Immunol. 2017;140(4):988-995. doi:10.1016/j.jaci.2016.12.991.

Kurai D, Saraya T, Ishii H, Takizawa H. Virus-induced exacerbations in asthma and COPD. Front Microbiol. 2013;4:293. doi:10.3389/fmicb.2013.00293.

Jartti T, Gern JE. Role of viral infections in the development and exacerbation of asthma in children. J Allergy Clin Immunol. 2017;140(4):895-906. doi:10.1016/j.jaci.2017.08.003.

Yamaya M. Virus infection-induced bronchial asthma exacerbation. Pulm Med. 2012;2012:834826. doi:10.1155/2012/834826.

Rossi GA, Colin AA. Infantile respiratory syncytial virus and human rhinovirus infections: respective role in inception and persistence of wheezing. Eur Respir J. 2015;45(3):774-789. doi:10.1183/09031936.00062714.

Rossi GA, Colin AA. Respiratory syncytial virus-Host interaction in the pathogenesis of bronchiolitis and its impact on respiratory morbidity in later life. Pediatr Allergy Immunol. 2017;28(4):320-331. doi:10.1111/pai.12716.

Holt PG, Mok D, Panda D, et al. Developmental regulation of type 1 and type 3 interferon production and risk for infant infections and asthma development. J Allergy Clin Immunol. 2019;143(3):1176-1182.e5. doi:10.1016/j.jaci.2018.08.035.

Chiu C, Openshaw PJ. Antiviral B cell and T cell immunity in the lungs. Nat Immunol. 2015;16(1):18-26. doi:10.1038/ni.3056.

Papadopoulos NG, Xepapadaki P, Mallia P, et al. Mechanisms of virus-induced asthma exacerbations: state-of-the-art. A GA2LEN and InterAirways document. Allergy. 2007;62(5):457-470. doi:10.1111/j.1398-9995.2007.01341.x.

Hewitt R, Farne H, Ritchie A, Luke E, Johnston SL, Mallia P. The role of viral infections in exacerbations of chronic obstructive pulmonary disease and asthma. Ther Adv Respir Dis. 2016;10(2):158-174. doi:10.1177/1753465815618113.

Juhn YJ. Risks for infection in patients with asthma (or other atopic conditions): is asthma more than a chronic airway disease? J Allergy Clin Immunol. 2014;134(2):247-259. doi:10.1016/j.jaci.2014.04.024.

Jartti T, Gern JE. Role of viral infections in the development and exacerbation of asthma in children. J Allergy Clin Immunol. 2017;140(4):895-906. doi:10.1016/j.jaci.2017.08.003.

Kama Y, Kato M, Yamada Y, et al. The Suppressive Role of Streptococcus pneumoniae Colonization in Acute Exacerbations of Childhood Bronchial Asthma. Int Arch Allergy Immunol. 2020;181(3):191-199. doi:10.1159/000504541.

Hewitt R, Farne H, Ritchie A, Luke E, Johnston SL, Mallia P. The role of viral infections in exacerbations of chronic obstructive pulmonary disease and asthma. Ther Adv Respir Dis. 2016;10(2):158-174. doi:10.1177/1753465815618113.

Papadopoulos NG, Christodoulou I, Rohde G, et al. Viruses and bacteria in acute asthma exacerbations--a GA² LEN-DARE systematic review. Allergy. 2011;66(4):458-468. doi:10.1111/j.1398-9995.2010.02505.x.

Rossi GA, Pohunek P, Feleszko W, Ballarini S, Colin AA. Viral infections and wheezing-asthma inception in childhood: is there a role for immunomodulation by oral bacterial lysates? Clin Transl Allergy. 2020;10:17. Published 2020 Jun 3. doi:10.1186/s13601-020-00322-1.

Cazzola M, Anapurapu S, Page CP. Polyvalent mechanical bacterial lysate for the prevention of recurrent respiratory infections: a meta-analysis. Pulm Pharmacol Ther. 2012;25(1):62-68. doi:10.1016/j.pupt.2011.11.002.

Jurkiewicz D, Zielnik-Jurkiewicz B. Bacterial lysates in the prevention of respiratory tract infections. Otolaryngol Pol. 2018;72(5):1-8. doi:10.5604/01.3001.0012.7216.

Lejeune S, Deschildre A, Le Rouzic O, et al. Childhood asthma heterogeneity at the era of precision medicine: Modulating the immune response or the microbiota for the management of asthma attack. Biochem Pharmacol. 2020;179:114046. doi:10.1016/j.bcp.2020.114046.

Esposito S, Soto-Martinez ME, Feleszko W, Jones MH, Shen KL, Schaad UB. Nonspecific immunomodulators for recurrent respiratory tract infections, wheezing and asthma in children: a systematic review of mechanistic and clinical evidence. Curr Opin Allergy Clin Immunol. 2018;18(3):198-209. doi:10.1097/ACI.0000000000000433.

Kearney SC, Dziekiewicz M, Feleszko W. Immunoregulatory and immunostimulatory responses of bacterial lysates in respiratory infections and asthma. Ann Allergy Asthma Immunol. 2015;114(5):364-369. doi:10.1016/j.anai.2015.02.008.

Strickland DH, Judd S, Thomas JA, Larcombe AN, Sly PD, Holt PG. Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control. Mucosal Immunol. 2011;4(1):43-52. doi:10.1038/mi.2010.43.

Jiang J, Wang Y, Tang X, Yao Y, Zhou J. Regulation of Viral Infection-induced Airway Remodeling Cytokine Production by the TLR3-EGFR Signaling Pathway in Human Bronchial Epithelial Cells. COPD. 2016;13(6):750-755. doi:10.3109/15412555.2016.1168391.

Roth M, Pasquali C, Stolz D, Tamm M. Broncho Vaxom (OM-85) modulates rhinovirus docking proteins on human airway epithelial cells via Erk1/2 mitogen activated protein kinase and cAMP. PLoS One. 2017;12(11):e0188010. doi:10.1371/journal.pone.0188010.

Rosaschino F, Cattaneo L. Strategies for optimizing compliance of paediatric patients for seasonal antibacterial vaccination with sublingually administered Polyvalent Mechanical Bacterial Lysates (PMBL). Acta Biomed. 2004;75(3):171-178.

Braido F, Melioli G, Cazzola M, et al. Sub-lingual administration of a polyvalent mechanical bacterial lysate (PMBL) in patients with moderate, severe, or very severe chronic obstructive pulmonary disease (COPD) according to the GOLD spirometric classification: A multicentre, double-blind, randomised, controlled, phase IV study (AIACE study: Advanced Immunological Approach in COPD Exacerbation). Pulm Pharmacol Ther. 2015;33:75-80. doi:10.1016/j.pupt.2015.03.006.

Abrams EM, Raissy HH. Emerging Therapies in the Treatment of Early Childhood Wheeze. Pediatr Allergy Immunol Pulmonol. 2019;32(2):78-80. doi:10.1089/ped.2019.1043.

Emeryk A, Bartkowiak-Emeryk M, Raus Z, Braido F, Ferlazzo G, Melioli G. Mechanical bacterial lysate administration prevents exacerbation in allergic asthmatic children-The EOLIA study. Pediatr Allergy Immunol. 2018;29(4):394-401. doi:10.1111/pai.12894.

De Boer GM, Braunstahl GJ, Hendriks RW, Tramper GA. Bacterial lysates in the prevention of asthma exacerbations in uncontrolled asthma: the Breathe study. European Respiratory Journal. 2018;52:PA5008. doi:10.1183/13993003.congress-2018.PA5008.

Liao JY, Zhang T. Influence of OM-85 BV on hBD-1 and immunoglobulin in children with asthma and recurrent respiratory tract infection. Zhongguo Dang Dai Er Ke Za Zhi. 2014;16(5):508-512. (in Chinese).

Lu Y, Li Y, Xu L, Xia M, Cao L. Bacterial lysate increases the percentage of natural killer T cells in peripheral blood and alleviates asthma in children. Pharmacology. 2015;95(3-4):139-144. doi:10.1159/000377683.

Yin J, Xu B, Zeng X, Shen K. Broncho-Vaxom in pediatric recurrent respiratory tract infections: A systematic review and meta-analysis. Int Immunopharmacol. 2018;54:198-209. doi:10.1016/j.intimp.2017.10.032.

Sly PD, Galbraith S, Islam Z, Holt B, Troy N, Holt PG. Primary prevention of severe lower respiratory illnesses in at-risk infants using the immunomodulator OM-85. J Allergy Clin Immunol. 2019;144(3):870-872.e11. doi:10.1016/j.jaci.2019.05.032.

Martinez FD. Randomized, Placebo-controlled, Multicenter Study to Assess the Efficacy, Safety and Tolerability of ORal Bacterial EXtract for the Prevention of Wheezing Lower Respiratory Tract Illness (ORBEX): NCT02148796. Available from: https://clinicaltrials.gov/ct2/show/NCT02148796. Accessed: May 8, 2020.

Krivopustov SV. Modern possibilities for preventing respiratory infections in children. Zdorovʹe rebenka. 2011;(33):125-129. (in Russian).

Nedelskaya SN. Innovations in treatment and prevention of respiratory infections in children with the use of bacterial lyzates. Zdorovʹe rebenka. 2010;(26):79-83. (in Russian).

Pukhlik SM, Tagunova IK, Bogdanov KG, Andreyev AV. Experience of immunomodulator Respibron use in treatment of upper airway inflammatory diseases in children. Zdorovʹe rebenka. 2012;(41):50-52. (in Russian).

Yulish YeI. A new approach to immunotherapy of acute respiratory infections in children and to prevention of bacterial complications. Zdorovʹe rebenka. 2015;(61):159-163. doi:10.22141/2224-0551.2.61.2015.75134. (in Russian).

Umanec' TR. Modern views on the role of respiratory infection in the course of allergic diseases in children: the place of bacterial lysates. Zdorovʹe rebenka. 2017;12(6):88-92. (in Ukrainian).

Published

2021-09-10

How to Cite

Umanets, T., Lapshyn, V., & Rudnev О. (2021). Opportunities of prevention of asthma exacerbation induced by respiratory infection in children using bacterial lysates. CHILD`S HEALTH, 15(5), 333–338. https://doi.org/10.22141/2224-0551.15.5.2020.211451

Issue

Section

To Help the Pediatrician

Most read articles by the same author(s)