Proteases that degrade the biofilm matrix

Authors

DOI:

https://doi.org/10.22141/2224-0551.15.3.2020.204554

Keywords:

bacterial biofilms, dispersion, extracellular bacterial proteases

Abstract

Biofilms protect bacteria from the action of antibacterial drugs and are one of the mechanisms of antibiotic resistance of infections. Destruction of the bacterial biofilm matrix leads to the release of bacteria and they again become vulnerable to antibacterial agents. Various enzymes are involved in the degradation of various components of the excellular matrix of biofilms: proteases, glycosidases, deoxyribonucleases, which are secreted by bacteria and macroorganism cells. Numerous bacterial proteases and proteases of animal origin contribute to the dispersion of biofilms. Proteases are divided into two main groups: exo- and endopeptidases. Exopeptidases are involved in the dispersion of biofilms. Bacterial proteases perform two main functions: firstly, they are involved in providing the microorganism with peptide nutrients and, secondly, they contribute to the development of the infectious process. Bacteria of each family produce several proteases, the activity of which is directed against various targeted molecules. Bacterial proteases such as aureolysin, staphopaines A and B, streptococcal cysteine protease, V8 serine protease, Spl protease, lysostaphin, LasВ protease, LapG protease, serratiopeptidase, proteinase K, subtilisin and subtilisin-like enzymes that are involved in the breakdown of the bioprotein matrix contribute to the release of pathogenic bacteria, which leads to an increase in the effectiveness of antibiotic therapy and reduces the risk of an adverse course of severe bacterial infections. It has now been shown that the use of recombinant forms of lysostaphin, serratiopeptidase, proteinase K is accompanied by a decrease in the weight of the biofilm or its complete degradation and contributes to the sanogenesis of infectious diseases. Despite the fact that most of the identified proteases with antibiotic activity are currently in the phase of experimental study, there is no doubt that drugs developed on their basis will become drugs that will be used in the treatment of diseases caused by antibiotic-resistant infections.

Downloads

Download data is not yet available.

References

Abtahi H, Farhangnia L, Ghaznavi-Rad E. In Vitro and in Vivo Antistaphylococcal Activity Determination of the New Recombinant Lysostaphin Protein. Jundishapur J Microbiol. 2016;9(3):e28489. doi:10.5812/jjm.28489.

Adekoya OA, Sylte I. The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential. Chem Biol Drug Des. 2009;73(1):7–16. doi:10.1111/j.1747-0285.2008.00757.x.

Augustin M, Ali-Vehmas T, Atroshi F. Assessment of enzymatic cleaning agents and disinfectants against bacterial biofilms. J Pharm Pharm Sci. 2004;7(1):55–64.

Bastos MD, Coutinho BG, Coelho ML. Lysostaphin: A Staphylococcal Bacteriolysin with Potential Clinical Applications. Pharmaceuticals (Basel). 2010;3(4):1139–1161. doi:10.3390/ph3041139.

Berscheid A, François P, Strittmatter A, et al. Generation of a vancomycin-intermediate Staphylococcus aureus (VISA) strain by two amino acid exchanges in VraS. J Antimicrob Chemother. 2014;69(12):3190–3198. doi:10.1093/jac/dku297.

Blackledge MS, Worthington RJ, Melander C. Biologically inspired strategies for combating bacterial biofilms. Curr Opin Pharmacol. 2013;13(5):699–706. doi:10.1016/j.coph.2013.07.004.

Boksha IS, Lavrova NV, Grishin AV, et al. Staphylococcus simulans Recombinant Lysostaphin: Production, Purification, and Determination of Antistaphylococcal Activity. Biochemistry (Mosc). 2016;81(5):502–510. doi:10.1134/S0006297916050072.

Ceotto-Vigoder H, Marques SL, Santos IN, et al. Nisin and lysostaphin activity against preformed biofilm of Staphylococcus aureus involved in bovine mastitis. J Appl Microbiol. 2016;121(1):101–114. doi:10.1111/jam.13136.

Cherny KE, Sauer K. Untethering and Degradation of the Polysaccharide Matrix Are Essential Steps in the Dispersion Response of Pseudomonas aeruginosa Biofilms. J Bacteriol. 2020;202(3):e00575-19. doi:10.1128/JB.00575-19.

Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry. Front Microbiol. 2016;7:1641. doi:10.3389/fmicb.2016.01641.

Dubin G. Extracellular proteases of Staphylococcus spp. Biol Chem. 2002;383(7-8):1075–1086. doi:10.1515/BC.2002.116.

Duman ZE, Ünlü A, Çakar MM, Ünal H, Binay B. Enhanced production of recombinant Staphylococcus simulans lysostaphin using medium engineering. Prep Biochem Biotechnol. 2019;49(5):521–528. doi:10.1080/10826068.2019.1599393.

Figueiredo J, Sousa Silva M, Figueiredo A. Subtilisin-like proteases in plant defence: the past, the present and beyond. Mol Plant Pathol. 2018;19(4):1017–1028. doi:10.1111/mpp.12567.

Fleming D, Rumbaugh KP. Approaches to Dispersing Medical Biofilms. Microorganisms. 2017;5(2):15. doi:10.3390/microorganisms5020015.

Gupte V, Luthra U. Analytical techniques for serratiopeptidase: A review. J Pharm Anal. 2017;7(4):203–207. doi:10.1016/j.jpha.2017.03.005.

Hogan S, Zapotoczna M, Stevens NT, Humphreys H, O'Gara JP, O'Neill E. Potential use of targeted enzymatic agents in the treatment of Staphylococcus aureus biofilm-related infections. J Hosp Infect. 2017;96(2):177–182. doi:10.1016/j.jhin.2017.02.008.

Kaplan JB. Biofilm matrix-degrading enzymes. Methods Mol Biol. 2014;1147:203–213. doi:10.1007/978-1-4939-0467-9_14.

Kokai-Kun JF, Chanturiya T, Mond JJ. Lysostaphin eradicates established Staphylococcus aureus biofilms in jugular vein catheterized mice. J Antimicrob Chemother. 2009;64(1):94–100. doi:10.1093/jac/dkp145.

Kumar JK. Lysostaphin: an antistaphylococcal agent. Appl Microbiol Biotechnol. 2008;80(4):555–561. doi:10.1007/s00253-008-1579-y.

Kumar Shukla S, Rao TS. Dispersal of Bap-mediated Staphylococcus aureus biofilm by proteinase K. J Antibiot (Tokyo). 2013;66(2):55–60. doi:10.1038/ja.2012.98.

Loughran AJ, Atwood DN, Anthony AC, et al. Impact of individual extracellular proteases on Staphylococcus aureus biofilm formation in diverse clinical isolates and their isogenic sarA mutants. Microbiologyopen. 2014;3(6):897–909. doi:10.1002/mbo3.214.

Martínez-García S, Rodríguez-Martínez S, Cancino-Diaz ME, Cancino-Diaz JC. Extracellular proteases of Staphylococcus epidermidis: roles as virulence factors and their participation in biofilm. APMIS. 2018;126(3):177–185. doi:10.1111/apm.12805.

Maunders E, Welch M. Matrix exopolysaccharides; the sticky side of biofilm formation. FEMS Microbiol Lett. 2017;364(13):fnx120. doi:10.1093/femsle/fnx120.

Mitkowski P, Jagielska E, Nowak E, et al. Structural bases of peptidoglycan recognition by lysostaphin SH3b domain. Sci Rep. 2019;9(1):5965. doi:10.1038/s41598-019-42435-z.

Mitrofanova O, Mardanova A, Evtugyn V, Bogomolnaya L, Sharipova M. Effects of Bacillus Serine Proteases on the Bacterial Biofilms. Biomed Res Int. 2017;2017:8525912. doi:10.1155/2017/8525912.

Mootz JM, Malone CL, Shaw LN, Horswill AR. Staphopains modulate Staphylococcus aureus biofilm integrity. Infect Immun. 2013;81(9):3227–3238. doi:10.1128/IAI.00377-13.

Nandan A, Nampoothiri KM. Molecular advances in microbial aminopeptidases. Bioresour Technol. 2017;245(Pt B):1757–1765. doi:10.1016/j.biortech.2017.05.103.

Nirale NM, Menon MD. Topical formulations of serratiopeptidase: development and pharmacodynamic evaluation. Indian J Pharm Sci. 2010;72(1):65–71. doi:10.4103/0250-474X.62246.

Oloketuyi SF, Khan F. Inhibition strategies of Listeria monocytogenes biofilms-current knowledge and future outlooks. J Basic Microbiol. 2017;57(9):728–743. doi:10.1002/jobm.201700071.

Oscarsson J, Tegmark-Wisell K, Arvidson S. Coordinated and differential control of aureolysin (aur) and serine protease (sspA) transcription in Staphylococcus aureus by sarA, rot and agr (RNAIII). Int J Med Microbiol. 2006;296(6):365–380. doi:10.1016/j.ijmm.2006.02.019.

Otto M. Staphylococcal Biofilms. Microbiol Spectr. 2018;6(4). doi:10.1128/microbiolspec.GPP3-0023-2018.

Park JH, Lee JH, Cho MH, Herzberg M, Lee J. Acceleration of protease effect on Staphylococcus aureus biofilm dispersal. FEMS Microbiol Lett. 2012;335(1):31–38. doi:10.1111/j.1574-6968.2012.02635.x.

Pietrocola G, Nobile G, Rindi S, Speziale P. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases. Front Cell Infect Microbiol. 2017;7:166. doi:10.3389/fcimb.2017.00166.

Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9(1):522–554. doi:10.1080/21505594.2017.1313372.

Rybtke M, Berthelsen J, Yang L, Høiby N, Givskov M, Tolker-Nielsen T. The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface. Microbiologyopen. 2015;4(6):917–930. doi:10.1002/mbo3.301.

Selan L, Papa R, Tilotta M, et al. Serratiopeptidase: a well-known metalloprotease with a new non-proteolytic activity against S. aureus biofilm. BMC Microbiol. 2015;15:207. doi:10.1186/s12866-015-0548-8.

Shukla SK, Rao TS. Staphylococcus aureus biofilm removal by targeting biofilm-associated extracellular proteins. Indian J Med Res. 2017;146(Supplement):S1–S8. doi:10.4103/ijmr.IJMR_410_15.

Silva CJ, Vázquez-Fernández E, Onisko B, Requena JR. Proteinase K and the structure of PrPSc: The good, the bad and the ugly. Virus Res. 2015;207:120–126. doi:10.1016/j.virusres.2015.03.008.

Tam K, Torres VJ. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiol Spectr. 2019;7(2):10.1128/microbiolspec.GPP3-0039-2018. doi:10.1128/microbiolspec.GPP3-0039-2018.

Thallinger B, Prasetyo EN, Nyanhongo GS, Guebitz GM. Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnol J. 2013;8(1):97–109. doi:10.1002/biot.201200313.

Tossavainen H, Raulinaitis V, Kauppinen L, Pentikäinen U, Maaheimo H, Permi P. Structural and Functional Insights Into Lysostaphin-Substrate Interaction. Front Mol Biosci. 2018;5:60. doi:10.3389/fmolb.2018.00060.

Xu D, Jia R, Li Y, Gu T. Advances in the treatment of problematic industrial biofilms. World J Microbiol Biotechnol. 2017;33(5):97. doi:10.1007/s11274-016-2203-4.

Published

2021-09-10

How to Cite

Abaturov А. (2021). Proteases that degrade the biofilm matrix. CHILD`S HEALTH, 15(3), 187–194. https://doi.org/10.22141/2224-0551.15.3.2020.204554

Issue

Section

Theoretical Medicine

Most read articles by the same author(s)

1 2 3 > >>