Drug control of biofilm dispersion due to regulation of the activity of bacterial cyclic guanosine monophosphate (part 1)





bacterial biofilms, dispersion, c-di-GMP, antibiofilm therapy, review


The infectious process caused by pathogenic bacteria can be accompanied by the formation of a biofilm, which determines the safety of bacteria and a decrease in the effectiveness of antibacterial agents. The development of drugs that contribute to the dispersion of bacterial biofilms is one of the most important therapeutic areas, which help solve the problem of treating bacterial infections caused by microorganisms that are resistant to antibacterial agents. One of the target bacterial molecules involved in biofilm formation, which can be subjected to drug regulation, is a nucleotide secondary messenger molecule — cyclic dinucleotide guanosine monophosphate (c-di-GMP). Drug suppression of the level of intra-bacterial concentration of the messenger molecule of c-di-GMP or blocking its activity helps prevent the formation of bacterial biofilm and leads to its destruction, which is accompanied by an increase in the level of effectiveness of treatment of bacterial infections. A decrease in the level of intra-bacterial concentration of c-di-GMP can be achieved by inhibiting the synthesis processes due to: 1) suppression of diguanylate cyclase activity; 2) restriction on the availability of substrates required for the synthesis of c-di-GMP; 3) increased degradation of c-di-GMP molecule due to activation of phosphodiesterase activity. The treatment of infectious diseases, which are accompanied by the formation of biofilms, requires the medical induction of the dispersion of bacteria from biofilms and the use of targeted antibiotic drugs that cause the death of bacteria released from biofilms. The use of c-di-GMP analogues, which disrupt the functioning of native c-di-GMP, and the blocking of targeted receptors and other molecular structures can also lead to the dispersion of bacterial biofilm. Medicines that modulate the activity of c-di-GMP will increase the effectiveness of the antibacterial treatment of bacterial infections, which are accompanied by the formation of biofilms.


Download data is not yet available.


Abaturov AE, Kryuchko TA. Dispersion of bacterial biofilm and chronization of respiratory tract infection. Zdorov`e rebenka. 2019;14(5):337-342. doi: 10.22141/2224-0551.14.5.2019.177411. (in Russian).

Abaturov AE, Kryuchko TA. Pharmaceutical effect on the biofilm dispersion. Nitric oxide donors. Zdorov`e rebenka. 2019;14(7):450-457. doi: 10.22141/2224-0551.14.7.2019.184626. (in Russian).

Abaturov AE, Yulish EI. The role of interferons in the protection of the respiratory tract, part 1: Cascade of excitation of the system of interferons. Zdorov`e rebenka. 2007;(5):136-144. (in Russian).

AbdelKhalek A, Abutaleb NS, Mohammad H, Seleem MN. Repurposing ebselen for decolonization of vancomycin-resistant enterococci (VRE). PLoS One. 2018;13(6):e0199710. doi: 10.1371/journal.pone.0199710.

Ahonen MJR, Dorrier JM, Schoenfisch MH. Antibiofilm Efficacy of Nitric Oxide-Releasing Alginates against Cystic Fibrosis Bacterial Pathogens. ACS Infect Dis. 2019;5(8):1327–1335. doi: 10.1021/acsinfecdis.9b00016.

Ahonen MJR, Suchyta DJ, Zhu H, Schoenfisch MH. Nitric Oxide-Releasing Alginates. Biomacromolecules. 2018;19(4):1189–1197. doi: 10.1021/acs.biomac.8b00063.

Allan RN, Kelso MJ, Rineh A, et al. Cephalosporin-NO-donor prodrug PYRRO-C3D shows β-lactam-mediated activity against Streptococcus pneumoniae biofilms. Nitric Oxide. 2017;65:43–49. doi: 10.1016/j.niox.2017.02.006.

Almblad H, Harrison JJ, Rybtke M, et al. The Cyclic AMP-Vfr Signaling Pathway in Pseudomonas aeruginosa Is Inhibited by Cyclic Di-GMP. J Bacteriol. 2015;197(13):2190–2200. doi:10.1128/JB.00193-15.

Antoniani D, Bocci P, Maciag A, Raffaelli N, Landini P. Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol. 2010;85(4):1095–1104. doi: 10.1007/s00253-009-2199-x.

Antoniani D, Rossi E, Rinaldo S, et al. The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool availability. Appl Microbiol Biotechnol. 2013;97(16):7325–7336. doi: 10.1007/s00253-013-4875-0.

Barraud N, Kardak BG, Yepuri NR, et al. Cephalosporin-3'-diazeniumdiolates: targeted NO-donor prodrugs for dispersing bacterial biofilms. Angew Chem Int Ed Engl. 2012;51(36):9057–9060. doi: 10.1002/anie.201202414.

Chou SH, Galperin MY. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms. J Bacteriol. 2016;198(1):32–46. doi:10.1128/JB.00333-15.

Collins SA, Kelso MJ, Rineh A, et al. Cephalosporin-3'-Diazeniumdiolate NO Donor Prodrug PYRRO-C3D Enhances Azithromycin Susceptibility of Nontypeable Haemophilus influenzae Biofilms. Antimicrob Agents Chemother. 2017;61(2):e02086-16. doi: 10.1128/AAC.02086-16.

Cutruzzolà F, Frankenberg-Dinkel N. Origin and Impact of Nitric Oxide in Pseudomonas aeruginosa Biofilms. J Bacteriol. 2016;198(1):55–65. doi:10.1128/JB.00371-15.

de la Fuente-Núñez C, Reffuveille F, Fairfull-Smith KE, Hancock RE. Effect of nitroxides on swarming motility and biofilm formation, multicellular behaviors in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57(10):4877–4881. doi: 10.1128/AAC.01381-13.

Düvel J, Bense S, Möller S, et al. Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs. J Bacteriol. 2015;198(1):138–146. Published 2015 Aug 31. doi:10.1128/JB.00377-15.

Fernicola S, Paiardini A, Giardina G, et al. In Silico Discovery and In Vitro Validation of Catechol-Containing Sulfonohydrazide Compounds as Potent Inhibitors of the Diguanylate Cyclase PleD. J Bacteriol. 2015;198(1):147–156. doi: 10.1128/JB.00742-15.

Fernicola S, Torquati I, Paiardini A, et al. Synthesis of Triazole-Linked Analogues of c-di-GMP and Their Interactions with Diguanylate Cyclase. J Med Chem. 2015;58(20):8269–8284. doi: 10.1021/acs.jmedchem.5b01184.

Hasan N, Cao J, Lee J, et al. PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix. Mater Sci Eng C Mater Biol Appl. 2019;103:109741. doi: 10.1016/j.msec.2019.109741.

Hengge R. Trigger phosphodiesterases as a novel class of c-di-GMP effector proteins. Philos Trans R Soc Lond B Biol Sci. 2016;371(1707):20150498. doi:10.1098/rstb.2015.0498.

Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol. 2017;15(5):271–284. doi:10.1038/nrmicro.2016.190.

Kalia D, Merey G, Nakayama S, et al. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev. 2013;42(1):305–341. doi:10.1039/c2cs35206k.

Kang D, Kirienko NV. High-Throughput Genetic Screen Reveals that Early Attachment and Biofilm Formation Are Necessary for Full Pyoverdine Production by Pseudomonas aeruginosa. Front Microbiol. 2017;8:1707. doi:10.3389/fmicb.2017.01707.

Kang D, Turner KE, Kirienko NV. PqsA Promotes Pyoverdine Production via Biofilm Formation. Pathogens. 2017;7(1):3. doi:10.3390/pathogens7010003.

Karaolis DK, Means TK, Yang D, et al. Bacterial c-di-GMP is an immunostimulatory molecule. J Immunol. 2007;178(4):2171–2181. doi:10.4049/jimmunol.178.4.2171.

Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017;15(12):740–755. doi:10.1038/nrmicro.2017.99.

Lieberman OJ, Orr MW, Wang Y, Lee VT. High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases. ACS Chem Biol. 2014;9(1):183–192. doi:10.1021/cb400485k.

Mann EE, Wozniak DJ. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev. 2012;36(4):893–916. doi:10.1111/j.1574-6976.2011.00322.x.

Matsuyama BY, Krasteva PV, Baraquet C, Harwood CS, Sondermann H, Navarro MV. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2016;113(2):E209–E218. doi:10.1073/pnas.1523148113.

McCarthy RR, Valentini M, Filloux A. Contribution of Cyclic di-GMP in the Control of Type III and Type VI Secretion in Pseudomonas aeruginosa. Methods Mol Biol. 2017;1657:213–224. doi:10.1007/978-1-4939-7240-1_17.

Moradali MF, Ghods S, Rehm BHA. Activation Mechanism and Cellular Localization of Membrane-Anchored Alginate Polymerase in Pseudomonas aeruginosa. Appl Environ Microbiol. 2017;83(9):e03499-16. doi:10.1128/AEM.03499-16.

O'Connor JR, Kuwada NJ, Huangyutitham V, Wiggins PA, Harwood CS. Surface sensing and lateral subcellular localization of WspA, the receptor in a chemosensory-like system leading to c-di-GMP production. Mol Microbiol. 2012;86(3):720–729. doi:10.1111/mmi.12013.

Oliveira C, Benfeito S, Fernandes C, Cagide F, Silva T, Borges F. NO and HNO donors, nitrones, and nitroxides: Past, present, and future. Med Res Rev. 2018;38(4):1159–1187. doi:10.1002/med.21461.

Opoku-Temeng C, Sintim HO. Targeting c-di-GMP Signaling, Biofilm Formation, and Bacterial Motility with Small Molecules. Methods Mol Biol. 2017;1657:419–430. doi:10.1007/978-1-4939-7240-1_31.

Orr MW, Lee VT. A PilZ domain protein for chemotaxis adds another layer to c-di-GMP-mediated regulation of flagellar motility. Sci Signal. 2016;9(450):fs16. doi:10.1126/scisignal.aai8859.

Qvortrup K, Hultqvist LD, Nilsson M, et al. Small Molecule Anti-biofilm Agents Developed on the Basis of Mechanistic Understanding of Biofilm Formation. Front Chem. 2019;7:742. doi:10.3389/fchem.2019.00742.

Ravichandran A, Ramachandran M, Suriyanarayanan T, Wong CC, Swarup S. Global Regulator MorA Affects Virulence-Associated Protease Secretion in Pseudomonas aeruginosa PAO1. PLoS One. 2015;10(4):e0123805. doi:10.1371/journal.pone.0123805.

Römling U, Galperin MY. Discovery of the Second Messenger Cyclic di-GMP. Methods Mol Biol. 2017;1657:1–8. doi:10.1007/978-1-4939-7240-1_1.

Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev. 2013;77(1):1–52. doi:10.1128/MMBR.00043-12.

Rong F, Tang Y, Wang T, et al. Nitric Oxide-Releasing Polymeric Materials for Antimicrobial Applications: A Review. Antioxidants (Basel). 2019;8(11):556. doi:10.3390/antiox8110556.

Ross P, Weinhouse H, Aloni Y, et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature. 1987;325(6101):279–281. doi:10.1038/325279a0.

Sambanthamoorthy K, Luo C, Pattabiraman N, et al. Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling. 2014;30(1):17–28. doi:10.1080/08927014.2013.832224.

Sambanthamoorthy K, Sloup RE, Parashar V, et al. Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob Agents Chemother. 2012;56(10):5202–5211. doi:10.1128/AAC.01396-12.

Schirmer T. C-di-GMP Synthesis: Structural Aspects of Evolution, Catalysis and Regulation. J Mol Biol. 2016;428(19):3683–3701. doi:10.1016/j.jmb.2016.07.023.

Skariyachan S, Sridhar VS, Packirisamy S, Kumargowda ST, Challapilli SB. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiol (Praha). 2018;63(4):413–432. doi:10.1007/s12223-018-0585-4.

Soren O, Rineh A, Silva DG, et al. Cephalosporin nitric oxide-donor prodrug DEA-C3D disperses biofilms formed by clinical cystic fibrosis isolates of Pseudomonas aeruginosa. J Antimicrob Chemother. 2020;75(1):117–125. doi:10.1093/jac/dkz378.

Sortino S. Light-controlled nitric oxide delivering molecular assemblies. Chem Soc Rev. 2010;39(8):2903–2913. doi:10.1039/b908663n.

Thangamani S, Younis W, Seleem MN. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections. Sci Rep. 2015;5:11596. doi:10.1038/srep11596.

Valentini M, Filloux A. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas aeruginosa and Other Bacteria. Biol Chem. 2016; 291(24): 12547-12555. doi: 10.1074/115.711507.

Wang J, Zhou J, Donaldson GP, et al. Conservative change to the phosphate moiety of cyclic diguanylic monophosphate remarkably affects its polymorphism and ability to bind DGC, PDE, and PilZ proteins. J Am Chem Soc. 2011;133(24):9320–9330. doi:10.1021/ja1112029.

Wang T, Cai Z, Shao X, et al. Pleiotropic Effects of c-di-GMP Content in Pseudomonas syringae. Appl Environ Microbiol. 2019;85(10):e00152-19. doi:10.1128/AEM.00152-19.

Wei Q, Leclercq S, Bhasme P, et al. Diguanylate Cyclases and Phosphodiesterases Required for Basal-Level c-di-GMP in Pseudomonas aeruginosa as Revealed by Systematic Phylogenetic and Transcriptomic Analyses. Appl Environ Microbiol. 2019;85(21):e01194-19. doi:10.1128/AEM.01194-19.

Wo Y, Li Z, Brisbois EJ, et al. Origin of Long-Term Storage Stability and Nitric Oxide Release Behavior of CarboSil Polymer Doped with S-Nitroso-N-acetyl-D-penicillamine. ACS Appl Mater Interfaces. 2015;7(40):22218–22227. doi:10.1021/acsami.5b07501.

Yan J, Deforet M, Boyle KE, et al. Bow-tie signaling in c-di-GMP: Machine learning in a simple biochemical network. PLoS Comput Biol. 2017;13(8):e1005677. doi:10.1371/journal.pcbi.1005677.

Yang L, Feura ES, Ahonen MJR, Schoenfisch MH. Nitric Oxide-Releasing Macromolecular Scaffolds for Antibacterial Applications. Adv Healthc Mater. 2018;7(13):e1800155. doi:10.1002/adhm.201800155.

Yin W, Wang Y, Liu L, He J. Biofilms: The Microbial "Protective Clothing" in Extreme Environments. Int J Mol Sci. 2019;20(14):3423. doi:10.3390/ijms20143423.

Zheng Y, Tsuji G, Opoku-Temeng C, Sintim HO. Inhibition of P. aeruginosa c-di-GMP phosphodiesterase RocR and swarming motility by a benzoisothiazolinone derivative. Chem Sci. 2016;7(9):6238–6244. doi:10.1039/c6sc02103d.

Zhou E, Seminara AB, Kim SK, Hall CL, Wang Y, Lee VT. Thiol-benzo-triazolo-quinazolinone Inhibits Alg44 Binding to c-di-GMP and Reduces Alginate Production by Pseudomonas aeruginosa. ACS Chem Biol. 2017;12(12):3076–3085. doi:10.1021/acschembio.7b00826.



How to Cite

Abaturov А. (2021). Drug control of biofilm dispersion due to regulation of the activity of bacterial cyclic guanosine monophosphate (part 1). CHILD`S HEALTH, 15(1), 60–67. https://doi.org/10.22141/2224-0551.15.1.2020.196759



Review of Literature