Dispersion of bacterial biofilm and chronization of respiratory tract infection





biofilm dispersion, respiratory tract, recurrent and chronic infectious inflammatory diseases, review


The scientific review deals with modern ideas about the process of dispersing the biofilms of pathogenic bacteria. For writing the article, information was searched using Scopus, Web of Science, MedLine, PubMed, Google Scholar, EMBASE, Global Health, The Cochrane Library, CyberLeninka databases. Biofilm dispersion is the coordinated release of differentiated, motile, chemotactic bacteria from the matrix and their spread to new colonization loci. The dependence of biofilm dispersion on the influence of bacterial density in the biofilm, quorum-sensing signals, and nutrient supply has been demonstrated. The characteristics of mechanisms, phases and types of biofilm dispersion are given. Three phases of dispersion of the bacterial biofilm were distinguished: 1) separation of cells from the bacterial colony of biofilms; 2) translocation of bacteria to a new location; 3) the adhesion of bacteria to the substrate of a new region. The active and passive mechanisms of biofilm dispersion are described. Three types of dispersion are characterized: erosion, peeling and seeding. The sequence of events leading to the destruction of biofilm is considered. The triggers of dispersion of the bacterial biofilm, which are various exo- and endogenous factors, are described. Attention is focused on the lysis of bacteria, which contributes to the formation of cavities in the biofilm matrix, as an essential component of biofilm dispersion. The role of biofilm dispersion in the development of recurrent and chronic infectious inflammatory diseases of the respiratory tract is characterized. Attention is focused on the features of the dispersed pathogen population consisting of both individual bacteria and bacterial aggregates, which allows for better adaptation of bacteria to environmental changes.


Download data is not yet available.

Author Biographies

А.Е. Abaturov, State Institution “Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine”, Dnipro, Ukraine

MD, PhD, Professor, Head of the Department of pediatrics 1 and medical genetics

Т.А. Kryuchko, State Higher Education Institution of Ukraine “Ukrainian Medical Stomatological Academy”, Poltava

MD, Professor, Head of the Department of pediatrics 2


Barraud N, Kjelleberg S, Rice SA. Dispersal from Microbial Biofilms. Microbiol Spectr. 2015 Dec;3(6). doi: 10.1128/microbiolspec.MB-0015-2014.

Bayles KW. The biological role of death and lysis in biofilm development. Nat Rev Microbiol. 2007 Sep;5(9):721-6. doi: 10.1038/nrmicro1743.

Beitelshees M, Hill A, Jones CH, Pfeifer BA. Phenotypic Variation during Biofilm Formation: Implications for Anti-Biofilm Therapeutic Design. Materials (Basel). 2018 Jun 26;11(7). pii: E1086. doi: 10.3390/ma11071086.

Beloin C, Renard S, Ghigo JM, Lebeaux D. Novel approaches to combat bacterial biofilms. Curr Opin Pharmacol. 2014 Oct;18:61-8. doi: 10.1016/j.coph.2014.09.005.

Berlanga M, Guerrero R. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Fact. 2016 Oct 1;15(1):165. doi: 10.1186/s12934-016-0569-5.

Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013 May;(136):1-51. doi: 10.1111/apm.12099.

Chua SL, Liu Y, Yam JK, et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat Commun. 2014 Jul 21;5:4462. doi: 10.1038/ncomms5462.

de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol. 2013 Oct;16(5):580-9. doi: 10.1016/j.mib.2013.06.013.

Fleming D, Rumbaugh KP. Approaches to Dispersing Medical Biofilms. Microorganisms. 2017 Apr 1;5(2). pii: E15. doi: 10.3390/microorganisms5020015.

Guilhen C, Charbonnel N, Parisot N, et al. Transcriptional profiling of Klebsiella pneumoniae defines signatures for planktonic, sessile and biofilm-dispersed cells. BMC Genomics. 2016 Mar 15;17:237. doi: 10.1186/s12864-016-2557-x.

Guilhen C, Forestier C, Balestrino D. Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties. Mol Microbiol. 2017 Jul;105(2):188-210. doi: 10.1111/mmi.13698.

Jamal M, Ahmad W, Andleeb S, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018 Jan;81(1):7-11. doi: 10.1016/j.jcma.2017.07.012.

Kaplan JB. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res. 2010 Mar;89(3):205-18. doi: 10.1177/0022034509359403.

Kiran GS, Ninawe AS, Lipton AN, Pandian V, Selvin J. Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource. Crit Rev Biotechnol. 2016;36(3):399-415. doi: 10.3109/07388551.2014.979758.

Kragh KN, Hutchison JB, Melaugh G, et al. Role of Multicellular Aggregates in Biofilm Formation. MBio. 2016 Mar 22;7(2):e00237. doi: 10.1128/mBio.00237-16.

Kruijt M, Tran H, Raaijmakers JM. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J Appl Microbiol. 2009 Aug;107(2):546-56. doi: 10.1111/j.1365-2672.2009.04244.x.

Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 2009 Mar;5(3):e1000354. doi: 10.1371/journal.ppat.1000354.

Marks LR, Davidson BA, Knight PR, Hakansson AP. Interkingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. MBio. 2013 Jul 23;4(4). pii: e00438-13. doi: 10.1128/mBio.00438-13.

Pettigrew MM, Marks LR, Kong Y, Gent JF, Roche-Hakansson H, Hakansson AP. Dynamic changes in the Streptococcus pneumoniae transcriptome during transition from biofilm formation to invasive disease upon influenza A virus infection. Infect Immun. 2014 Nov;82(11):4607-19. doi: 10.1128/IAI.02225-14.

Römling U, Galperin MY. Discovery of the Second Messenger Cyclic di-GMP. Methods Mol Biol. 2017;1657:1-8. doi: 10.1007/978-1-4939-7240-1_1.

Rossmann FS, Racek T, Wobser D, et al. Phage-mediated dispersal of biofilm and distribution of bacterial virulence genes is induced by quorum sensing. PLoS Pathog. 2015 Feb 23;11(2):e1004653. doi: 10.1371/journal.ppat.1004653.

Satputea SK, Banpurkar AG, Banat IM, Sangshetti JN, Patil RH, Gade WN. Multiple Roles of Biosurfactants in Biofilms. Curr Pharm Des. 2016;22(11):1429-48. doi: 10.2174/1381612822666160120152704.

Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol. 2008 Mar;6(3):199-210. doi: 10.1038/nrmicro1838.

Wood TK. Biofilm dispersal: deciding when it is better to travel. Mol Microbiol. 2014 Nov;94(4):747-50. doi: 10.1111/mmi.12797.



How to Cite

Abaturov А., & Kryuchko Т. (2021). Dispersion of bacterial biofilm and chronization of respiratory tract infection. CHILD`S HEALTH, 14(5), 337–342. https://doi.org/10.22141/2224-0551.14.5.2019.177411



Review of Literature