Comparing the impact of different modes of ventilation on cerebral blood flow in term infants with hypoxic-ischemic encephalopathy




hypoxia, encephalopathy, neonates, ventilation, resistant index, neurally adjusted ventilatory assist


Background. To date, there are no published results of large randomized controlled studies compared the differentiated influence of different modes of ventilation on cerebral perfusion in newborns with hypoxic-ischemic encephalopathy (HIE). New mode of ventilation named neurally adjusted ventilatory assist (NAVA) looks promising on this field, because it has already proved its advantages in premature babies. The purpose was to compare the impact of neurally adjusted ventilatory assist and other modes of ventilation on cerebral blood flow in the acute period of HIE in full-term neonates. Materials and methods. Data of 205 term infants with hypoxi­c-ischemic encephalopathy Sarnat stage II–III was collected during ≤ 72 hours of life. All the infants were randomized into the group of NAVA (n = 16) and the control group (n = 189), which included such modes of ventilation as pressure control (PC), synchronized intermittent-mandatory ventilation/pressure support ventilation (SIMV/PSV) and pressure-regulated volume control (PRVC). A multivariate dispersion analysis of the impact of NAVA and other modes of ventilation on cerebral perfusion during the acute period of neonatal hypoxi­c-ische­mic encephalopathy was performed. Results. A significant difference was found between groups on day 3 of treatment at the end of the period of therapeutic hypothermia and the rewarming beginning in terms of Doppler resistive index (RI) of cerebral blood flow (0.70 [0.67–0.74] in the NAVA group and 0.66 [0.58–0.72] in the control group; p = 0.021) and the pulsatile index (PI) (1.3 [1.2–1.5] in the NAVA group and 1.2 [1.0–1.40] in the control group; p = 0.032). Also, analysis of variance results confirmed that compared with other ventilation modes, NAVA had a statistically significant positive influence both on the RI (p = 0.009) and on the PI (p = 0.012) at days 2 and 3 of observation. Conclusions. The neurally adjusted ventilatory assist demonstrated a positive impact on cerebral perfusion indices in full-term newborns during the acute HIE period compared with traditional modes of ventilation: PC, SIMV/PSV and PRVC.


Download data is not yet available.


Foster JP, Buckmaster A, Sinclair L, Lees S, Guaran R. Nasal continuous positive airway pressure (nCPAP) for term neonates with respiratory distress. Cochrane Database of Systematic Reviews. 2015;11:CD011962. doi: 10.1002/14651858.CD011962.

Dewez JE, van den Broek N. Continuous positive airway pressure (CPAP) to treat respiratory distress in newborns in low- and middle-income countries. Trop Doct. 2017;47(1):19-22. doi: 10.1177/0049475516630210.

Levene MI, de Vries L. Hypoxic-ischemic encephalopathy. In: Martin RJ, Fanaroff AA, Walsh MC, editors. Fanaroff and Martin's neonatal-perinatal medicine: diseases of the fetus and infant. 9th Ed. St. Louis, Missoury: Elseiver Mosby Inc; 2011. 952-975 pp.

Zanelli SA, Stanley DP. Hypoxic-ischemic encephalopathy. Available from: Available: Jul 18 2018.

Verma P, Kalraiya A. Respiratory compliance of newborns after birth and their short-term outcomes. Int J Contemp Pediatr. 2017;4(2):620-624. doi: 10.18203/2349-3291.ijcp20170720.

Goldsmith JP, Karotkin E, Suresh G, Keszler M. Assisted Ventilation of the Neonate, 6th Edition. Evidence-Based Approach to Newborn Respiratory Care. Elsevier; 2017. 640 p.

Brainerd TL. Assisted ventilation of the neonate. JAMA. 2012;307(22):2437. doi: 10.1001/jama.307.22.2437-a.

Pappas A, Shankaran S, Laptook AR, et al. Hypocarbia and adverse outcome in neonatal hypoxic-ischemic encephalopathy. J Pediatr. 2011;158(5):752-758. doi: 10.1016/j.jpeds.2010.10.019.

Bancalari E, Claure N. Advances in respiratory support for high risk newborn infants. Matern Health Neonatol Perinatol. 2015 May 21;1:13. doi: 10.1186/s40748-015-0014-5.

Gupta S, Janakiraman S. Volume ventilation in neonates. Paediatrics and Child Health. 2018;8(1):1-5. doi: 10.1016/j.paed.2017.09.004.

Chitty H, Sinha S. Volume-targeted ventilation in newborn infants. Infant. 2015;11(1):8-12.

Krieger TJ, Wald M. Volume-targeted ventilation in the neonate: benchmarking ventilators on an active lung model. Pediatr Crit Care Med. 2017;18(3):241-248. doi: 10.1097/PCC.0000000000001088.

Klingenberg C, Wheeler KI, McCallion N, Morley CJ, Davis PG. A comparison of volume-targeted ventilation modes with traditional pressure-limited ventilation modes for newborn babies. Cochrane Database Syst Rev. 2017;10:CD003666. doi: 10.1002/14651858.CD003666.pub4.

Wang C, Guo L, Chi C, et al. Mechanical ventilation modes for respiratory distress syndrome in infants: a systematic review and network meta-analysis. Crit Care. 2015;19:108. doi: 10.1186/s13054-015-0843-7.

Greenough A, Dimitriou G, Prendergast M, Milner AD. Synchronized mechanical ventilation for respiratory support in newborn infants. Cochrane Database Syst Rev. 2008 Jan 23;(1):CD000456. doi: 10.1002/14651858.CD000456.pub3.

Rocha G, Soares P, Gonçalves A, et al. Respiratory care for the ventilated neonate. Canadian Respiratory Journal. 2018 Aug 13;2018:7472964. doi: 10.1155/2018/7472964.

Guthrie SO, Lynn C, Lafleur BJ, Donn SM, Walsh WF. A crossover analysis of mandatory minute ventilation compared to synchronized intermittent mandatory ventilation in neonates. J Perinatol. 2005;25(10):643-646. doi: 10.1038/

Claure N, Bancalari E. New modes of mechanical ventilation in the preterm newborn: evidence of benefit. Arch Dis Child Fetal Neonatal Ed. 2007;92(6): F508-F512. doi: 10.1136/adc.2006.108852.

Serra A, Stronati M. Pressure support ventilation in neonatal age: lights and shadows. Pediatr Med Chir. 2005;27(6):13-18.

Rozé JC, Krüger T. Pressure support ventilation – a new triggered ventilation mode for neonates. Lübeck: Dräger Medizintechnik GmbH; 2015. 72 p.

Hokenson MA, Shepherd EG. Neonatal pressure support ventilation: are we doing what we think we are doing? Respiratory Care. 2014;59(10):1606-1607. doi: 10.4187/respcare.03616.

El-Rahman Ali AA, El-Razik El Wahsha RA, El-Sattar Aghaa MA, Tawadroosb BB. Pressure regulated volume controlled ventilation versus synchronized intermittent mandatory ventilation in COPD patients suffering from acute respiratory failure. Egyptian Journal of Chest Diseases and Tuberculosis. 2016;65(1):121-125. doi: 10.1016/j.ejcdt.2015.08.004.

Stein H, Firestone K. Application of neurally adjusted ventilatory assist in neonates. Semin Fetal Neonatal Med. 2014;19(1):60-69. doi: 10.1016/j.siny.2013.09.005.

Kallio M, Peltoniemi O, Anttila E, Pokka T, Kontiokari T. Neurally adjusted ventilatory assist (NAVA) in pediatric intensive care--a randomized controlled trial. Pediatr Pulmonol. 2015;50(1):55-62. doi: 10.1002/ppul.22995.

Ducharme-Crevier L, Beck J, Essouri S, Jouvet P, Emeriaud G. Neurally adjusted ventilatory assist (NAVA) allows patient-ventilator synchrony during pediatric noninvasive ventilation: a crossover physiological study. Crit Care. 2015;19:44. doi: 10.1186/s13054-015-0770-7.

Goligher EC, Douflé G, Fan E. Update in mechanical ventilation, sedation, and outcomes 2014. Am J Respir Crit Care Med. 2015;191(12):1367-1373. doi: 10.1164/rccm.201502-0346UP.

Liet J-M, Barrière F, Gaillard-Le Roux B, Bourgoin P, Legrand A, Joram N. Physiological effects of invasive ventilation with neurally adjusted ventilatory assist (NAVA) in a crossover study. BMC Pediatr. 2016;16:180. doi: 10.1186/s12887-016-0717-4.

Arca MJ, Uhing M, Wakeham M. Current concepts in acute respiratory support for neonates and children. Semin Pediatr Surg. 2015;24(1):2-7. doi: 10.1053/j.sempedsurg.2014.11.001.

Rossor TE, Shetty S, Greenough A. Neurally adjusted ventilatory assist for neonatal respiratory support. Cochrane Database of Systematic Reviews. 2016;6:CD012251. doi: 10.1002/14651858.CD012251.

Garcia-Muñoz Rodrigo F, Rivero Rodriguez S, Florido Rodriguez A, Martin Cruz FG, Diaz Pulido R. Successful weaning and extubation in the premature newborn using neuraly adjusted ventilatory assist. An Pediatr (Barc). 2015;82(1):e126-e130. doi: 10.1016/j.anpedi.2014.01.024. (in Spanish).

Piastra M, De Luca D, Costa R, et al. Neurally adjusted ventilatory assist vs pressure support ventilation in infants recovering fromsevere acute respiratory distress syndrome: Nested study. J Crit Care. 2014;29(2):312. e1-5. doi: 10.1016/j.jcrc.2013.08.006.

Beck J, Emeriaud G, Liu Y, Sinderby C. Neurally-adjusted ventilatory assist (NAVA) in children: a systematic review. Minerva Anestesiol. 2016;82(8):874-883.

Kadivar M, Mosayebi Z, Sangsari R, Soltan Alian H, Jedari Attari S. Neurally Adjusted Ventilatory Assist in neonates: a research study. J Compr Ped. 2018;9(3):e62297. doi: 10.5812/compreped.62297.

Narchi H, Chedid F. Neurally adjusted ventilator assist in very low birthweight infants: Current status. World J Methodol. 2015;5(2):62-67. doi: 10.5662/wjm.v5i2.62.

Proisy M, Mitra S, Uria-Avellana C, Sokolska M, Robertson NJ, Le Jeune F. Brain perfusion imaging in neonates: an overview. AJNR Am J Neuroradiol. 2016 Oct;37(10):1766-1773. doi: 10.3174/ajnr.A4778.

Wong F. Cerebral blood flow measurements in the neonatal brain. Prenatal and Postnatal Determinants of Development. 2016;109:69-87. doi: 10.1007/978-1-4939-3014-2_5.

Orman G, Benson JE, Kweldam CF, et al. Neonatal head ultrasonography today: a powerful imaging tool. J Neuroimaging. 2015 Jan-Feb;25(1):31-55. doi: 10.1111/jon.12108.

Gerner GJ, Burton VJ, Poretti A, et al. Transfontanellar duplex brain ultrasonography resistive indices as a prognostic tool in neonatal hypoxic-ischemic encephalopathy before and after treatment with therapeutic hypothermia. J Perinatol. 2016 Mar;36(3):202-6. doi: 10.1038/jp.2015.169.

Elstad M, Whitelaw A, Thoresen M. Cerebral resistance index is less predictive in hypothermic encephalopathic newborns. Acta Paediatr. 2011 Oct;100(10):1344-9. doi: 10.1111/j.1651-2227.2011.02327.x.

Shetty S, Hunt K, Peacock J, Ali K, Greenough A. Crossover study of Assist Control ventilation and Neurally Adjusted Ventilatory Assist. Eur J Pediatr. 2017;176(4):509-513. doi: 10.1007/s00431-017-2866-3.



How to Cite

Surkov, D. (2021). Comparing the impact of different modes of ventilation on cerebral blood flow in term infants with hypoxic-ischemic encephalopathy. CHILD`S HEALTH, 14(3), 182–188.