Antibiofilm therapy in the treatment of respiratory infectious diseases caused by bacterial pathogens


  • А.Е. Abaturov State Institution “Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine”, Dnipro, Ukraine
  • Т.А. Kryuchko HSEIU “Ukrainian Medical Stomatological Academy”, Poltava, Ukraine



bacterial biofilms, respiratory infections


In a colonized environment, pathogenic bacteria change the form of existence from the planktonic to the microbiosocial, forming a peculiar structure, the so-called biofilm. The formation of biofilm is a key factor in the virulence of a wide range of pathogenic bacteria that cause both acute and chronic infections. The tolerance of biofilm bacteria to antibacterial agents underlies the majority of recurrent and chronic infectious diseases. Currently, therapeutic strategies are being developed to solve this problem. These strategies are aimed at suppressing the vital activity of biofilms. The therapeutic agents for protection against pathogenic bacterial biofilms are divided into two large groups. The first group are compounds that inhibit the formation of biofilms, and the second group are compounds that destabilize or destroy the structure of a mature formed biofilm. There is experimental evidence that the use of these drugs will be effective in the treatment of diseases associated with the formation of biofilms.


Download data is not yet available.


Madsen JS, Sorensen SJ, Burmolle M. Bacterial social interactions and the emergence of community-intrinsic properties. Curr Opin Microbiol. 2018 Apr;42:104-109. doi: 10.1016/j.mib.2017.11.018.

Brouse L, Brouse R, Brouse D. Natural Pathogen Control Chemistry to Replace Toxic Treatment of Microbes and Biofilm in Cooling Towers. Pathogens. 2017 Mar 31;6(1). pii: E14. doi: 10.3390/pathogens6010014.

Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P. Biofilm, pathogenesis and prevention - a journey to break the wall: a review. Arch Microbiol. 2016 Jan;198(1):1-15. doi: 10.1007/s00203-015-1148-6.

Moser C, Pedersen HT, Lerche CJ, et al. Biofilms and host response - helpful or harmful. APMIS. 2017 Apr;125(4):320-338. doi: 10.1111/apm.12674.

Jamal M, Ahmad W, Andleeb S, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018 Jan;81(1):7-11. doi: 10.1016/j.jcma.2017.07.012.

Dragoš A, Kovács ÁT. The Peculiar Functions of the Bacterial Extracellular Matrix. Trends Microbiol. 2017 Apr;25(4):257-266. doi: 10.1016/j.tim.2016.12.010.

Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010 Sep;8(9):623-33. doi: 10.1038/nrmicro2415.

Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. 2015 May;34(5):877-86. doi: 10.1007/s10096-015-2323-z.

Marquès C, Tasse J, Pracros A, et al. Effects of antibiotics on biofilm and unattached cells of a clinical Staphylococcus aureus isolate from bone and joint infection. J Med Microbiol. 2015 Sep;64(9):1021-6. doi: 10.1099/jmm.0.000125.

Batoni G, Maisetta G, Esin S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim Biophys Acta. 2016 May;1858(5):1044-60. doi: 10.1016/j.bbamem.2015.10.013.

Taraszkiewicz A, Fila G, Grinholc M, Nakonieczna J. Innovative strategies to overcome biofilm resistance. Biomed Res Int. 2013;2013:150653. doi: 10.1155/2013/150653.

Ciofu O, Rojo-Molinero E, Macià MD, Oliver A. Antibiotic treatment of biofilm infections. APMIS. 2017 Apr;125(4):304-319. doi: 10.1111/apm.12673.

Gbejuade HO, Lovering AM, Webb JC. The role of microbial biofilms in prosthetic joint infections. Acta Orthop. 2015 Apr;86(2):147-58. doi: 10.3109/17453674.2014.966290.

Zeng J, Zhang N, Huang B, et al. Mechanism of azithromycin inhibition of HSL synthesis in Pseudomonas aeruginosa. Sci Rep. 2016 Apr 14;6:24299. doi: 10.1038/srep24299.

Feraco D, Blaha M, Khan S, Green JM, Plotkin BJ. Host environmental signals and effects on biofilm formation. Microb Pathog. 2016 Oct;99:253-263. doi: 10.1016/j.micpath.2016.08.015.

Palanisamy NK, Ferina N, Amirulhusni AN et al. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J Nanobiotechnology. 2014 Jan 14;12:2. doi: 10.1186/1477-3155-12-2.

Dua K, Shukla SD, Tekade RK, Hansbro PM. Whether a novel drug delivery system can overcome the problem of biofilms in respiratory diseases. Drug Deliv Transl Res. 2017 Feb;7(1):179-187. doi: 10.1007/s13346-016-0349-0.

Priftis KN, Litt D, Manglani S et al. Bacterial bronchitis caused by Streptococcus pneumoniae and nontypable Haemophilus influenzae in children: the impact of vaccination. Chest. 2013 Jan;143(1):152-157. doi: 10.1378/chest.12-0623.

Fernández-Barat L, Torres A. Biofilms in ventilator-associated pneumonia. Future Microbiol. 2016 Dec;11:1599-1610. doi: 10.2217/fmb-2016-0040.

Gil-Perotin S, Ramirez P, Marti V, et al. Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: a state of concept. Crit Care. 2012 May 23;16(3):R93. doi: 10.1186/cc11357.

Ciofu O, Tolker-Nielsen T, Jensen PО, Wang H, Høiby N. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev. 2015 May;85:7-23. doi: 10.1016/j.addr.2014.11.017.

Ahearn CP, Gallo MC, Murphy TF. Insights on Persistent Airway Infection by Nontypeable Haemophilus influenzae in Chronic Obstructive Pulmonary Disease. Pathog Dis. 2017 Jun 1;75(4). doi: 10.1093/femspd/ftx042.

Ishak A, Everard ML. Persistent and Recurrent Bacterial Bronchitis-A Paradigm Shift in Our Understanding of Chronic Respiratory Disease. Front Pediatr. 2017 Feb 15;5:19. doi: 10.3389/fped.2017.00019.

Rogers GB, van der Gast CJ, Serisier DJ. Predominant pathogen competition and core microbiota divergence in chronic airway infection. ISME J. 2015 Jan;9(1):217-25. doi: 10.1038/ismej.2014.124.

Brackman G, Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des. 2015;21(1):5-11. doi: 10.2174/1381612820666140905114627.

Oppenheimer-Shaanan Y, Steinberg N, Kolodkin-Gal I. Small molecules are natural triggers for the disassembly of biofilms. Trends Microbiol. 2013 Nov;21(11):594-601. doi: 10.1016/j.tim.2013.08.005.

Romero D, Kolter R. Will biofilm disassembly agents make it to market? Trends Microbiol. 2011 Jul;19(7):304-6. doi: 10.1016/j.tim.2011.03.003.

Xu D, Jia R, Li Y, Gu T. Advances in the treatment of problematic industrial biofilms. World J Microbiol Biotechnol. 2017 May;33(5):97. doi: 10.1007/s11274-016-2203-4.

Kaistha SD, Umrao PD. Bacteriophage for Mitigation of Multiple Drug Resistant Biofilm Forming Pathogens. Recent Pat Biotechnol. 2016;10(2):184-194. doi: 10.2174/1872208310666160919122155.

Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol. 2017 Apr;101(8):3103-3119. doi: 10.1007/s00253-017-8224-6.

Omar A, Wright JB, Schultz G, Burrell R, Nadworny P. Microbial Biofilms and Chronic Wounds. Microorganisms. 2017 Mar 7;5(1). pii: E9. doi: 10.3390/microorganisms5010009.

Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014 Sep;78(3):510-43. doi: 10.1128/MMBR.00013-14.

Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017 Dec;15(12):740-755. doi: 10.1038/nrmicro.2017.99.

Richter K, Van den Driessche F, Coenye T. Innovative approaches to treat Staphylococcus aureus biofilm-related infections. Essays Biochem. 2017 Mar 3;61(1):61-70. doi: 10.1042/EBC20160056.



How to Cite

Abaturov А., & Kryuchko Т. (2021). Antibiofilm therapy in the treatment of respiratory infectious diseases caused by bacterial pathogens. CHILD`S HEALTH, 13(7), 704–709.



Theoretical Medicine