Drug inhibition of bacterial two-component regulatory systems

Authors

  • А.Е. Abaturov State Institution “Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine”, Dnipro, Ukraine http://orcid.org/0000-0001-6291-5386
  • Т.А. Kryuchko HSEIU “Ukrainian Medical Stomatological Academy”, Poltava, Ukraine

DOI:

https://doi.org/10.22141/2224-0551.13.3.2018.132917

Keywords:

bacterial regulatory systems, respiratory tract diseases, anti-TCS drugs

Abstract

There are several ways to adapt and increase the chances of survival of microorganisms. Specific systems involved in the recognition of external changes and the organization of the corresponding reaction of the microorganism are called bacterial sensory systems. Bacterial sensory or regulatory systems can be activated by both chemical and mechanical triggers. These bacterial regulatory systems are divided into four main groups: 1) a group of quorum sensing systems; 2) a group of single-molecule autonomous regulators; 3) a group of regulatory RNAs that play a crucial role in regulating the activity of transcription and translation in eukaryotes and bacteria; 4) a group of two-component systems (TCS), which are the most common bacterial regulatory systems. As a result of excitation of the sensory kinase, the signal chains associated with TCS lead to the activation of expression of the virulence factor genes. Therefore, drug suppression of TCS can reduce the level of bacterial virulence and contribute to the resolution of the infectious process. Anti-TCS drugs are promising antimicrobial drugs, and in the near future they will take a worthy place in the therapy of infectious inflammatory diseases of the respiratory tract caused by antibiotic-resistant bacterial strains.

Downloads

Download data is not yet available.

References

Abouelhassan Y, Basak A, Yousaf H, Huigens RW 3rd. Identification of N-Arylated NH125 Analogues as Rapid Eradicating Agents against MRSA Persister Cells and Potent Biofilm Killers of Gram-Positive Pathogens. Chembiochem. 2017 Feb 16;18(4):352-357. doi: 10.1002/cbic.201600622.

Abriata LA, Albanesi D, Dal Peraro M, de Mendoza D. Signal Sensing and Transduction by Histidine Kinases as Unveiled through Studies on a Temperature Sensor. Acc Chem Res. 2017 Jun 20;50(6):1359-1366. doi: 10.1021/acs.accounts.6b00593.

Barrett JF, Goldschmidt RM, Lawrence LE, et al. Antibacterial agents that inhibit two-component signal transduction systems. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5317-22.

Basak A, Abouelhassan Y, Zuo R, Yousaf H, Ding Y, Huigens RW. Antimicrobial peptide-inspired NH125 analogues: bacterial and fungal biofilm-eradicating agents and rapid killers of MRSA persisters. Org Biomol Chem. 2017 Jul 5;15(26):5503-5512. doi: 10.1039/c7ob01028a.

Bem AE, Velikova N, Pellicer MT, Baarlen Pv, Marina A, Wells JM. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem Biol. 2015 Jan 16;10(1):213-24. doi: 10.1021/cb5007135.

Bhate MP, Molnar KS, Goulian M, DeGrado WF. Signal transduction in histidine kinases: insights from new structures. Structure. 2015 Jun 2;23(6):981-94. doi: 10.1016/j.str.2015.04.002.

Bonde M, Højland DH, Kolmos HJ, Kallipolitis BH, Klitgaard JK. Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett. 2011 May;318(2):168-76. doi: 10.1111/j.1574-6968.2011.02255.x.

Bronner S, Monteil H, Prévost G. Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev. 2004 May;28(2):183-200. doi: 10.1016/j.femsre.2003.09.003.

Cai Y, Su M, Ahmad A, et al. Conformational dynamics of the essential sensor histidine kinase WalK. Acta Crystallogr D Struct Biol. 2017 Oct 1;73(Pt 10):793-803. doi: 10.1107/S2059798317013043.

Casino P, Rubio V, Marina A. The mechanism of signal transduction by two-component systems. Curr Opin Struct Biol. 2010 Dec;20(6):763-71. doi: 10.1016/j.sbi.2010.09.010.

Choi MJ, Kim S, Ko KS. Pathways Regulating the pbgP Operon and Colistin Resistance in Klebsiella pneumoniae Strains. J Microbiol Biotechnol. 2016 Sep 28;26(9):1620-8. doi: 10.4014/jmb.1604.04016.

Draughn GL, Allen CL, Routh PA, et al. Evaluation of a 2-aminoimidazole variant as adjuvant treatment for dermal bacterial infections. Drug Des Devel Ther. 2017 Jan 16;11:153-162. doi: 10.2147/DDDT.S111865.

Fakhruzzaman M, Inukai Y, Yanagida Y, et al. Study on in vivo effects of bacterial histidine kinase inhibitor, Waldiomycin, in Bacillus subtilis and Staphylococcus aureus. J Gen Appl Microbiol. 2015;61(5):177-84. doi: 10.2323/jgam.61.177.

Ferris HU, Dunin-Horkawicz S, Hornig N, et al. Mechanism of regulation of receptor histidine kinases. Structure. 2012 Jan 11;20(1):56-66. doi: 10.1016/j.str.2011.11.014.

Galperin MY. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol. 2006 Jun;188(12):4169-82. doi: 10.1128/JB.01887-05.

Gill RK, Kumar V, Robijns SCA, Steenackers HPL, Van der Eycken EV, Bariwal J. Polysubstituted 2-aminoimidazoles as anti-biofilm and antiproliferative agents: Discovery of potent lead. Eur J Med Chem. 2017 Sep 29;138:152-169. doi: 10.1016/j.ejmech.2017.06.043.

Gilmour R, Foster JE, Sheng Q, et al. New class of competitive inhibitor of bacterial histidine kinases. J Bacteriol. 2005 Dec;187(23):8196-200. doi: 10.1128/JB.187.23.8196-8200.2005.

Gómez-Mejia A, Gámez G, Hammerschmidt S. Streptococcus pneumoniae two-component regulatory systems: The interplay of the pneumococcus with its environment. Int J Med Microbiol. 2017 Nov 26. pii: S1438-4221(17)30382-X. doi: 10.1016/j.ijmm.2017.11.012.

Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R. Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol. 2010 Apr;13(2):232-9. doi: 10.1016/j.mib.2010.01.008.

Guo H, Hall JW, Yang J, Ji Y. The SaeRS Two-Component System Controls Survival of Staphylococcus aureus in Human Blood through Regulation of Coagulase. Front Cell Infect Microbiol. 2017 May 29;7:204. doi: 10.3389/fcimb.2017.00204.

Harapanahalli AK, Younes JA, Allan E, van der Mei HC, Busscher HJ. Chemical Signals and Mechanosensing in Bacterial Responses to Their Environment. PLoS Pathog. 2015 Aug 27;11(8):e1005057. doi: 10.1371/journal.ppat.1005057.

Igarashi M, Watanabe T, Hashida T, et al. Waldiomycin, a novel WalK-histidine kinase inhibitor from Streptomyces sp. MK844-mF10. J Antibiot (Tokyo). 2013 Aug;66(8):459-64. doi: 10.1038/ja.2013.33.

Jacob K, Rasmussen A, Tyler P, et al. Regulation of acetyl-CoA synthetase transcription by the CrbS/R two-component system is conserved in genetically diverse environmental pathogens. PLoS One. 2017 May 18;12(5):e0177825. doi: 10.1371/journal.pone.0177825.

Jayol A, Poirel L, Brink A, Villegas MV, Yilmaz M, Nordmann P. Resistance to colistin associated with a single amino acid change in protein PmrB among Klebsiella pneumoniae isolates of worldwide origin. Antimicrob Agents Chemother. 2014 Aug;58(8):4762-6. doi: 10.1128/AAC.00084-14.

Johnson BK, Abramovitch RB. Small Molecules That Sabotage Bacterial Virulence. Trends Pharmacol Sci. 2017 Apr;38(4):339-362. doi: 10.1016/j.tips.2017.01.004.

Jung K, Fried L, Behr S, Heermann R. Histidine kinases and response regulators in networks. Curr Opin Microbiol. 2012 Apr;15(2):118-24. doi: 10.1016/j.mib.2011.11.009.

Matsushita M, Janda KD. Histidine kinases as targets for new antimicrobial agents. Bioorg Med Chem. 2002 Apr;10(4):855-67.

Mattos-Graner RO, Duncan MJ. Two-component signal transduction systems in oral bacteria. J Oral Microbiol. 2017 Nov 27;9(1):1400858. doi: 10.1080/20002297.2017.1400858.

Okada A, Igarashi M, Okajima T, et al. Walkmycin B targets WalK (YycG), a histidine kinase essential for bacterial cell growth. J Antibiot (Tokyo). 2010 Feb;63(2):89-94. doi: 10.1038/ja.2009.128.

Olaitan AO, Diene SM, Kempf M, et al. Worldwide emergence of colistin resistance in Klebsiella pneumoniae from healthy humans and patients in Lao PDR, Thailand, Israel, Nigeria and France owing to inactivation of the PhoP/PhoQ regulator mgrB: an epidemiological and molecular study. Int J Antimicrob Agents. 2014 Dec;44(6):500-7. doi: 10.1016/j.ijantimicag.2014.07.020.

Padilla-Vaca F, Mondragón-Jaimes V, Franco B. General Aspects of Two-Component Regulatory Circuits in Bacteria: Domains, Signals and Roles. Curr Protein Pept Sci. 2017;18(10):990-1004. doi: 10.2174/1389203717666160809154809.

Pullinger GD, van Diemen PM, Dziva F, Stevens MP. Role of two-component sensory systems of Salmonella enterica serovar Dublin in the pathogenesis of systemic salmonellosis in cattle. Microbiology. 2010 Oct;156(Pt 10):3108-22. doi: 10.1099/mic.0.041830-0.

Qin Z, Zhang J, Xu B, et al. Structure-based discovery of inhibitors of the YycG histidine kinase: new chemical leads to combat Staphylococcus epidermidis infections. BMC Microbiol. 2006 Nov 10;6:96. doi: 10.1186/1471-2180-6-96.

Rasmussen KS, Poulsen MØ, Jacobsen K, et al. Combination of thioridazine and dicloxacillin as a possible treatment strategy of staphylococci. New Microbiol. 2017 Apr;40(2):146-147.

Rivera-Cancel G, Ko WH, Tomchick DR, Correa F2, Gardner KH3. Full-length structure of a monomeric histidine kinase reveals basis for sensory regulation. Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17839-44. doi: 10.1073/pnas.1413983111.

Roychoudhury S, Zielinski NA, Ninfa AJ, et al. Inhibitors of two-component signal transduction systems: inhibition of alginate gene activation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):965-9.

Schreiber M, Res I, Matter A, et al. Protein kinases as antibacterial targets. Curr Opin Cell Biol. 2009 Apr;21(2):325-30. doi: 10.1016/j.ceb.2009.01.026.

Stenger M, Hendel K, Bollen P, Licht PB, Kolmos HJ, Klitgaard JK. Assessments of Thioridazine as a Helper Compound to Dicloxacillin against Methicillin-Resistant Staphylococcus aureus: In Vivo Trials in a Mouse Peritonitis Model. PLoS One. 2015 Aug 12;10(8):e0135571. doi: 10.1371/journal.pone.0135571.

Stenger M, Behr-Rasmussen C, Klein K, et al. Systemic thioridazine in combination with dicloxacillin against early aortic graft infections caused by Staphylococcus aureus in a porcine model: In vivo results do not reproduce the in vitro synergistic activity. PLoS One. 2017 Mar 9;12(3):e0173362. doi: 10.1371/journal.pone.0173362.

Thorsing M, Klitgaard JK, Atilano ML, et al. Thioridazine induces major changes in global gene expression and cell wall composition in methicillin-resistant Staphylococcus aureus USA300. PLoS One. 2013 May 17;8(5):e64518. doi: 10.1371/journal.pone.0064518.

Tiwari S, Jamal SB, Hassan SS, et al. Two-Component Signal Transduction Systems of Pathogenic Bacteria As Targets for Antimicrobial Therapy: An Overview. Front Microbiol. 2017 Oct 10;8:1878. doi: 10.3389/fmicb.2017.01878.

Watanabe T, Igarashi M, Okajima T, et al. Isolation and characterization of signermycin B, an antibiotic that targets the dimerization domain of histidine kinase WalK. Antimicrob Agents Chemother. 2012 Jul;56(7):3657-63. doi: 10.1128/AAC.06467-11.

Wei X, Huang X, Tang L, Wu D, Xu Y. Global control of GacA in secondary metabolism, primary metabolism, secretion systems, and motility in the rhizobacterium Pseudomonas aeruginosa M18. J Bacteriol. 2013 Aug;195(15):3387-400. doi: 10.1128/JB.00214-13.

Wilke KE, Francis S, Carlson EE. Inactivation of multiple bacterial histidine kinases by targeting the ATP-binding domain. ACS Chem Biol. 2015 Jan 16;10(1):328-35. doi: 10.1021/cb5008019.

Worthington RJ, Blackledge MS, Melander C. Small-molecule inhibition of bacterial two-component systems to combat antibiotic resistance and virulence. Future Med Chem. 2013 Jul;5(11):1265-84. doi: 10.4155/fmc.13.58.

Zheng Y, Zhang X, Wang X, Wang L, Zhang J, Yin Y. ComE, an Essential Response Regulator, Negatively Regulates the Expression of the Capsular Polysaccharide Locus and Attenuates the Bacterial Virulence in Streptococcus pneumoniae. Front Microbiol. 2017 Mar 7;8:277. doi: 10.3389/fmicb.2017.00277.

Published

2021-09-20

How to Cite

Abaturov А., & Kryuchko Т. (2021). Drug inhibition of bacterial two-component regulatory systems. CHILD`S HEALTH, 13(3), 326–333. https://doi.org/10.22141/2224-0551.13.3.2018.132917

Issue

Section

Theoretical Medicine

Most read articles by the same author(s)

1 2 3 > >>