The therapeutic potential of bacteriophages and endolysins in the treatment of acute respiratory infections caused by bacterial pathogens

Authors

  • А.Е. Abaturov SI “Dnipropetrovsk Medical Academy of Ministry of Health of Ukraine”, Dnipro, Ukraine http://orcid.org/0000-0001-6291-5386
  • Т.А. Kryuchko HSEIU “Ukrainian Medical Stomatological Academy”, Poltava, Ukraine

DOI:

https://doi.org/10.22141/2224-0551.12.6.2017.112840

Keywords:

acute respiratory infections, children, bacteriophages

Abstract

Bacteriophages are viruses that, due to the receptor/ligand interactions, are able to specifically bind to the bacterial wall and replicate within specific bacteria. The lytic enzymes of bacteriophages efficiently destroy the bacterial cell wall, but unlike antibiotics, they do not affect the vital activity of the symbiotic flora. Today, there is sufficient research experience on the efficacy of antistreptococcal, antistaphylococcal, anti­klebsiella, antipseudomonal bacteriophages and endolysins that can kill antibiotic-resistant bacteria, and therefore, their use as bactericidal drugs is a potentially effective therapeutic method of antimicrobial therapy. The high level of effectiveness of the bactericidal action of endolysins suggests that future drugs, created on the molecular basis of endolysins, can become key antimicrobial agents in the treatment of invasive infections.

Downloads

Download data is not yet available.

References

Ackermann H.W. 5500 Phages examined in the electron microscope. Arch Virol. 2007 Feb;152(2):227-43. doi: 10.1007/s00705-006-0849-1.

Alemayehu D, Casey PG, McAuliffe O, et al. Bacteriophages φMR299-2 and φNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. MBio. 2012 Mar 6;3(2):e00029-12. doi: 10.1128/mBio.00029-12. Print 2012.

Briers Y, Cornelissen A, Aertsen A, et al. Analysis of outer membrane permeability of Pseudomonas aeruginosa and bactericidal activity of endolysins KZ144 and EL188 under high hydrostatic pressure. FEMS Microbiol Lett. 2008 Mar;280(1):113-9. doi: 10.1111/j.1574-6968.2007.01051.x.

Briers Y, Walmagh M, Grymonprez B, et al. Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014 Jul;58(7):3774-84. doi: 10.1128/AAC.02668-14.

Briers Y, Walmagh M, Van Puyenbroeck V, et al. Engineered endolysin-based "Artilysins" to combat multidrug-resistant gram-negative pathogens. MBio. 2014 Jul 1;5(4):e01379-14. doi: 10.1128/mBio.01379-14.

Briers Y, Walmagh M, Lavigne R. Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa. J Appl Microbiol. 2011 Mar;110(3):778-85. doi: 10.1111/j.1365-2672.2010.04931.x.

Buttimer C, McAuliffe O, Ross RP, Hill C, O’Mahony J, Coffey A. Bacteriophages and Bacterial Plant Diseases. Front Microbiol. 2017; 8: 34. doi: 10.3389/fmicb.2017.00034.

Cisek AA, Dąbrowska I, Gregorczyk KP, Wyżewski Z. Phage Therapy in Bacterial Infections Treatment: One Hundred Years After the Discovery of Bacteriophages. Curr Microbiol. 2017 Feb;74(2):277-83. doi: 10.1007/s00284-016-1166-x.

Daniel A, Euler C, Collin M, Chahales P, Gorelick KJ, Fischetti VA. Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2010 Apr;54(4):1603-12. doi: 10.1128/AAC.01625-09.

Debarbieux L , Leduc D, Maura D, et al. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis. 2010 Apr 1;201(7):1096-104. doi: 10.1086/651135.

Díez-Martínez R , De Paz HD, García-Fernández E, et al. A novel chimeric phage lysin with high in vitro and in vivo bactericidal activity against Streptococcus pneumoniae. J Antimicrob Chemother. 2015;70(6):1763-73. doi: 10.1093/jac/dkv038.

Doehn JM, Fischer K, Reppe K, et al. Delivery of the endolysin Cpl-1 by inhalation rescues mice with fatal pneumococcal pneumonia. J Antimicrob Chemother. 2013 Sep;68(9):2111-7. doi: 10.1093/jac/dkt131.

Doss JA, Culbertson K, Hahn D, Camacho J, Barekzi N. Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms. Viruses. 2017 Mar; 9(3):50. doi: 10.3390/v9030050.

Entenza JM, Loeffler JM, Grandgirard D, Fischetti VA, Moreillon P. Therapeutic effects of bacteriophage Cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats. Antimicrob Agents Chemother. 2005 Nov; 49(11): 4789-92. doi: 10.1128/AAC.49.11.4789-4792.2005.

Fenton M, Ross P, McAuliffe O, O'Mahony J, Coffey A. Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs. 2010 Jan-Feb;1(1):9-16. doi: 10.4161/bbug.1.1.9818.

Gilmer DB, Schmitz JE, Euler CW, Fischetti VA. Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2013 Jun;57(6):2743-50. doi: 10.1128/AAC.02526-12.

Grandgirard D, Loeffler JM, Fischetti VA, Leib SL. Phage lytic enzyme Cpl-1 for antibacterial therapy in experimental pneumococcal meningitis. J Infect Dis. 2008 Jun 1;197(11):1519-22. doi: 10.1086/587942.

Gu J, Zuo J, Lei L, et al. LysGH15 reduces the inflammation caused by lethal methicillin-resistant Staphylococcus aureus infection in mice. Bioeng Bugs. 2011 Mar-Apr;2(2):96-9. doi: 10.4161/bbug.2.2.14883.

Guo M, Feng C, Ren J, et al. A Novel Antimicrobial Endolysin, LysPA26, against Pseudomonas aeruginosa. Front Microbiol. 2017;8:293. doi: 10.3389/fmicb.2017.00293.

Harper DR, Enright MC. Bacteriophages for the treatment of Pseudomonas aeruginosa infections. J Appl Microbiol. 2011 Jul;111(1):1-7. doi: 10.1111/j.1365-2672.2011.05003.x.

Hobbs Z, Abedon ST. Diversity of phage infection types and associated terminology: the problem with 'Lytic or lysogenic'. FEMS Microbiol Lett. 2016 Apr;363(7). pii: fnw047. doi: 10.1093/femsle/fnw047.

Hojckova K, Stano M, Klucar L. phiBIOTICS: catalogue of therapeutic enzybiotics, relevant research studies and practical applications. BMC Microbiol. 2013 Mar 6;13:53. doi: 10.1186/1471-2180-13-53.

Hraiech S, Brégeon F, Rolain JM. Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status. Drug Des Devel Ther. 2015;9:3653-63. doi: 10.2147/DDDT.S53123.

Najczęstsze pytania. Available from: https://www.iitd.pan.wroc.pl/pl/OTF/Pytania.html. Accessed: June 10, 2015. (in Poland).

Jado I, López R, García E, Fenoll A, Casal J, García P. Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother. 2003 Dec;52(6):967-73. doi: 10.1093/jac/dkg485.

Keary R, Sanz-Gaitero M, van Raaij MJ, et al. Characterization of a Bacteriophage-Derived Murein Peptidase for Elimination of Antibiotic-Resistant Staphylococcus aureus. Curr Protein Pept Sci. 2016;17(2):183-90. PMID: 26521950.

Krylov VN. Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy. Adv Virus Res. 2014;88:227-78. doi: 10.1016/B978-0-12-800098-4.00005-2.

Loeffler JM, Djurkovic S, Fischetti VA. Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immun. 2003 Nov;71(11):6199-204. doi: 10.1128/IAI.71.11.6199-6204.2003.

Loeffler JM, Nelson D, Fischetti VA. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science. 2001 Dec 7;294(5549):2170-2. doi: 10.1126/science.1066869.

Maciejewska B, Roszniowski B, Espaillat A, et al. Klebsiella phages representing a novel clade of viruses with an unknown DNA modification and biotechnologically interesting enzymes. Appl Microbiol Biotechnol. 2017; 101(2): 673-84. doi: 10.1007/s00253-016-7928-3.

Mariano R, Wuchty M,Vizoso-Pinto MG, Häuser R, Uetz P. The interactome of Streptococcus pneumoniae and its bacteriophages show highly specific patterns of interactions among bacteria and their phages. Sci Rep. 2016; 6: 24597. doi: 10.1038/srep24597.

McCullers JA, Karlström A, Iverson AR, Loeffler JM, Fischetti VA. Novel strategy to prevent otitis media caused by colonizing Streptococcus pneumoniae. PLoS Pathog. 2007 Mar; 3(3): e28. doi: 10.1371/journal.ppat.0030028.

Morello E, Saussereau E, Maura D, Huerre M, Touqui L, Debarbieux L. Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLoS One. 2011 Feb 15;6(2):e16963. doi: 10.1371/journal.pone.0016963.

Nelson D, Loomis L, Fischetti VA. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4107-12. doi: 10.1073/pnas.061038398.

Oliveira H, Melo LD, Santos SB, et al. Molecular aspects and comparative genomics of bacteriophage endolysins. J Virol. 2013 Apr;87(8):4558-70. doi: 10.1128/JVI.03277-12.

Paradis-Bleau C, Cloutier I, Lemieux L, et al. Peptidoglycan lytic activity of the Pseudomonas aeruginosa phage phiKZ gp144 lytic transglycosylase. FEMS Microbiol Lett. 2007 Jan;266(2):201-9. doi: 10.1111/j.1574-6968.2006.00523.x.

Park EA, Kim YT, Cho JH, Ryu S, Lee JH. Characterization and genome analysis of novel bacteriophages infecting the opportunistic human pathogens Klebsiella oxytoca and K. pneumoniae. Arch Virol. 2017 Apr;162(4):1129-39. doi: 10.1007/s00705-016-3202-3.

Pires DP, Vilas Boas D, Sillankorva S, Azeredo J. Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections. J Virol. 2015 Aug;89(15):7449-56. doi: 10.1128/JVI.00385-15.

Jun SY, Jung GM, Yoon SJ, et al. Preclinical safety evaluation of intravenously administered SAL200 containing the recombinant phage endolysin SAL-1 as a pharmaceutical ingredient. Antimicrob Agents Chemother. 2014;58(4):2084-8. doi: 10.1128/AAC.02232-13.

Rashel M, Uchiyama J, Ujihara T, et al. Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. J Infect Dis. 2007 Oct 15;196(8):1237-47. doi: 10.1086/521305.

Reindel R, Fiore CR. Phage Therapy: Considerations and Challenges for Development. Clin Infect Dis. 2017 Jun 1;64(11):1589-90. doi: 10.1093/cid/cix188.

Roach DR, Donovan DM. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage. 2015 Jul-Sep; 5(3): e1062590. doi: 10.1080/21597081.2015.1062590.

Schmelcher M, Powell AM, Becker SC, Camp MJ, Donovan DM. Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol. 2012 Apr;78(7):2297-305. doi: 10.1128/AEM.07050-11.

Schmelcher M, Shen Y, Nelson DC, et al. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J Antimicrob Chemother. 2015 May; 70(5): 1453-65. doi: 10.1093/jac/dku552.

Sharma S, Chatterjee S, Datta S, et al. Bacteriophages and its applications: an overview. Folia Microbiol (Praha). 2017 Jan;62(1):17-55. doi: 10.1007/s12223-016-0471-x.

To KH, Young R. Probing the structure of the S105 hole. J Bacteriol. 2014 Nov; 196(21): 3683-9. doi: 10.1128/JB.01673-14.

Torres-Barceló C, Arias-Sánchez FI, Vasse M, Ramsayer J, Kaltz O, Hochberg ME. A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PLoS One. 2014 Sep 26;9(9):e106628. doi: 10.1371/journal.pone.0106628.

Trudil D. Phage lytic enzymes: a history. Virol Sin. 2015 Feb;30(1):26-32. doi: 10.1007/s12250-014-3549-0.

Vouillamoz J, Entenza JM, Giddey M, Fischetti VA, Moreillon P, Resch G. Bactericidal synergism between daptomycin and the phage lysin Cpl-1 in a mouse model of pneumococcal bacteraemia. Int J Antimicrob Agents. 2013 Nov;42(5):416-21. doi: 10.1016/j.ijantimicag.2013.06.020.

Vuong C, Yeh AJ, Cheung GY, Otto M. Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drugs. 2016;25(1):73-93. doi: 10.1517/13543784.2016.1109077.

Walmagh M, Briers Y, dos Santos SB, Azeredo J, Lavigne R. Characterization of modular bacteriophage endolysins from Myoviridae phages OBP, 201φ2-1 and PVP-SE1. PLoS One. 2012;7(5):e36991. doi: 10.1371/journal.pone.0036991.

Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004 May;28(2):127-81. doi: 10.1016/j.femsre.2003.08.001.

Wittekind M, Schuch R. Cell wall hydrolases and antibiotics: exploiting synergy to create efficacious new antimicrobial treatments. Curr Opin Microbiol. 2016 Oct;33:18-24. doi: 10.1016/j.mib.2016.05.006.

Witzenrath M, Schmeck B, Doehn JM, et al. Systemic use of the endolysin Cpl-1 rescues mice with fatal pneumococcal pneumonia. Crit Care Med. 2009 Feb;37(2):642-9. doi: 10.1097/CCM.0b013e31819586a6.

Wu H, Huang Y, Lu H, Li G, Huang Q. GMEnzy: a genetically modified enzybiotic database. PLoS One. 2014; 9(8): e103687. doi: 10.1371/journal.pone.0103687.

Zhang L, Li D, Li X, et al. LysGH15 kills Staphylococcus aureus without being affected by the humoral immune response or inducing inflammation. Sci Rep. 2016 Jul 7;6:29344. doi: 10.1038/srep29344.

Published

2021-09-20

How to Cite

Abaturov А., & Kryuchko Т. (2021). The therapeutic potential of bacteriophages and endolysins in the treatment of acute respiratory infections caused by bacterial pathogens. CHILD`S HEALTH, 12(6), 702–711. https://doi.org/10.22141/2224-0551.12.6.2017.112840

Issue

Section

To Help the Pediatrician

Most read articles by the same author(s)

1 2 3 > >>