DOI: https://doi.org/10.22141/2224-0551.7.75.2016.86744

Influence of Exogenous Factors on Genomic Imprinting 3. The Impact of Assisted Reproductive Technologies

A.E. Abaturov

Abstract


The analytical review demonstrated the impact of assisted reproductive technologies on genomic imprinting of a child. It is shown that assisted reproductive technologies have a risk of intrauterine growth retardation and imprinting-associated Beckwith-Wiedemann, Angelman, Silver-Russell syndromes.


Keywords


assisted reproductive technologies; genomic imprinting; children

References


Aiken C.E., Ozanne S.E. Transgenerational developmental programming // Hum. Reprod. Update. 2014 Jan-Feb; 20 (1): 63-75. doi: 10.1093/humupd/dmt043.

Angiolini E. Regulation of placental efficiency for nutrient transport by imprinted genes / E. Angiolini, A. Fowden, P. Coan et al. // Placenta. 2006 Apr; 27 Suppl A: S98-102. doi: 10.1016/j.placenta.2005.12.008.

Bliek J. Hypomethylation of the H19 gene causes not only Silver-Russell syndrome (SRS) but al.so isolated asymmetry or an SRS-like phenotype / Bliek J., Terhal P., van den Bogaard M.J. et al. // Am. J. Hum. Genet. 2006 Apr; 78 (4): 604-14. doi: 10.1111/aogs.12799.

Bloise E. Impaired placental nutrient transport in mice generated by in vitro fertilization / E. Bloise, W. Lin, X. Liu et al. // Endocrinology. 2012 Jul; 153 (7): 3457-67. doi: 10.1210/en.2011-1921.

Boxmeer J.C. IVF outcomes are associated with biomarkers of the homocysteine pathway in monofollicular fluid / J.C. Boxmeer, N.S. Macklon, J. Lindemans et al. // Hum. Reprod. 2009 May; 24 (5): 1059-66. doi: 10.1093/humrep/dep009.

Carvalho J.O. The methylation patterns of the IGF2 and IGF2R genes in bovine spermatozoa are not affected by flow-cytometric sex sor­ting / J.O. Carvalho, V.A. Michalczechen-Lacerda, R. Sartori et al. // Mol. Reprod. Dev. 2012 Feb; 79 (2): 77-84. doi: 10.1002/mrd.21410.

Chen S. Assisted reproduction causes placental maldevelopment and dysfunction linked to reduced fetal weight in mice / S. Chen, F.Z. Sun, X. Huang et al. // Sci Rep. 2015 Jun 18; 5: 10596. doi: 10.1038/srep10596.

Chopra M. Russell-Silver syndrome due to paternal H19/IGF2 hypomethylation in a patient conceived using intracytoplasmic sperm injection / M. Chopra, D.J. Amor, L. Sutton, E. Algar, D. Mowat // Reprod. Biomed. Online. 2010 Jun; 20 (6): 843-7. doi: 10.1016/j.rbmo.2010.02.025.

Choux C. The placenta: phenotypic and epigenetic modifications induced by Assisted Reproductive Technologies throughout pregnancy / C. Choux, V. Carmignac, C. Bruno et al. // Clin. Epigenetics. 2015 Aug 21; 7 (1): 87. doi: 10.1186/s13148-015-0120-2.

Cocchi G. Silver-Russell syndrome due to paternal H19/IGF2 hypomethylation in a twin girl born after in vitro fertilization / G. Cocchi, C. Marsico, A. Cosentino et al. // Am. J. Med. Genet. A. 2013 Oct; 161A (10): 2652-5. doi: 10.1002/ajmg.a.36145.

Cox G.F. Intracytoplasmic sperm injection may increase the risk of imprinting defects / G.F. Cox, J. Bürger, V. Lip et al. // Am. J. Hum. Genet. 2002 Jul; 71 (1): 162-4. doi: 10.1086/341096.

de Waal E. In vitro culture increases the frequency of stochastic epigenetic errors at imprinted genes in placental tissues from mouse concepti produced through assisted reproductive technologies / E. de Waal, W. Mak, S. Calhoun et al. // Biol. Reprod. 2014 Feb 6; 90 (2): 22. doi: 10.1095/biolreprod.113.114785.

DeBaun M.R., Niemitz E.L., Feinberg A.P. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic al.terations of LIT1 and H19 // Am. J. Hum. Genet. 2003 Jan; 72 (1): 156-60. doi: 10.1086/346031.

Denomme M.M., Mann M.R. Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies // Reproduction. 2012 Oct; 144 (4): 393-409. doi: 10.1530/REP‑12-0237.

Desai M., Jellyman J.K., Ross M.G. Epigenomics, gestational programming and risk of metabolic syndrome // Int. J. Obes. (Lond). 2015 Apr; 39 (4): 633-41. doi: 10.1038/ijo.2015.13.

Diederich M. DNA methylation and mRNA expression profiles in bovine oocytes derived from prepubertal and adult donors / M. Diederich, T. Hansmann, J. Heinzmann et al. // Reproduction. 2012 Sep; 144 (3): 319-30. doi: 10.1530/REP‑12-0134.

Doornbos M.E. Infertility, assisted reproduction technologies and imprinting disturbances: a Dutch study / M.E. Doornbos, S.M. Maas, J. McDonnell, J.P. Vermeiden, R.C. Hennekam // Hum. Reprod. 2007 Sep; 22 (9): 2476-80. doi: 10.1093/humrep/dem172.

El-Maarri O. Maternal methylation imprints on human chromosome 15 are established during or after fertilization / O. El-Maarri, K. Buiting, E.G. Peery et al. // Nat. Genet. 2001 Mar; 27 (3): 341-4. doi: 10.1038/85927.

Geuns E. Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos / E. Geuns, M. De Rycke, A. Van Steirteghem, I. Liebaers // Hum. Mol. Genet. 2003 Nov 15; 12 (22): 2873-9. doi: 10.1093/hmg/ddg315.

Gicquel C. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene / C. Gicquel, V. Gaston, J. Mandelbaum et al. // Am. J. Hum. Genet. 2003 May; 72 (5): 1338-41. PMID: 12772698.

Gomes M.V. Abnormal methylation at the KvDMR1 imprin­ting control region in clinically normal children conceived by assisted reproductive technologies / M.V. Gomes, J. Huber, R.A. Ferriani et al. // Mol. Hum. Reprod. 2009 Aug; 15 (8): 471-7. doi: 10.1093/molehr/gap038.

Govorko D. Male germline transmits fetal al.cohol adverse effect on hypothalamic proopiomelanocortin gene across generations / Govor­ko D., Bekdash R.A., Zhang C., Sarkar D.K. // Biol. Psychiatry. 2012 Sep 1; 72 (5): 378-88. doi: 10.1016/j.biopsych.2012.04.006.

Grafodatskaya D., Cytrynbaum C., Weksberg R. The health risks of ART // EMBO Rep. 2013 Feb; 14 (2): 129-35. doi: 10.1038/embor.2012.222.

Heinzmann J. Epigenetic profile of developmentally important genes in bovine oocytes / J. Heinzmann, T. Hansmann, D. Herrmann et al. // Mol. Reprod. Dev. 2011 Mar; 78 (3): 188-201. doi: 10.1002/mrd.21281.

Hiura H. Characterization of DNA methylation errors in patients with imprinting disorders conceived by assisted reproduction technologies / H. Hiura, H. Okae, N. Miyauchi et al. // Hum. Reprod. 2012 Aug; 27 (8): 2541-8. doi: 10.1093/humrep/des197.

Hiura H. Imprinting methylation errors in ART / H. Hiura, H. Okae, H. Chiba et al. // Reprod. Med. Biol. 2014; 13 (4): 193-202. doi: 10.1007/s12522-014-0183-3.

Hoeijmakers L., Kempe H., Verschure P.J. Epigenetic imprin­ting during assisted reproductive technologies: The effect of temporal and cumulative fluctuations in methionine cycling on the DNA methylation state // Mol. Reprod. Dev. 2016 Feb; 83 (2): 94-107. doi: 10.1002/mrd.22605.

Kagami M. Silver-Russell syndrome in a girl born after in vitro fertilization: partial hypermethylation at the differentially methylated region of PEG1/MEST / M. Kagami, T. Nagai, M. Fukami, K. Yamazawa, T. Ogata // J. Assist. Reprod. Genet. 2007 Apr; 24 (4): 131-6. doi: 10.1007/s10815-006-9096-3.

Katari S. DNA methylation and gene expression differences in children conceived in vitro or in vivo / S. Katari, N. Turan, M. Bibikova et al. // Hum. Mol. Genet. 2009 Oct 15; 18 (20): 3769-78. doi: 10.1093/hmg/ddp319.

Khoueiry R. Abnormal methylation of KCNQ1OT1 and differential methylation of H19 imprinting control regions in human ICSI embryos / R. Khoueiry, S. Ibala-Romdhane, Méry L. et al. — ​Khtib et al. // Zygote. 2013 May; 21 (2): 129-38. doi: 10.1017/S0967199411000694.

Khoueiry R. Dynamic CpG methylation of the KCNQ1OT1 gene during maturation of human oocytes / Khoueiry R., Ibala-Rhomdane S., Méry L. et al. // J. Med. Genet. 2008 Sep; 45 (9): 583-8. doi: 10.1136/jmg.2008.057943.

Kopeika J., Thornhill A., Khalaf Y. The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence // Hum. Reprod. Update. 2015 Mar-Apr; 21 (2): 209-27. doi: 10.1093/humupd/dmu063.

Li B. Assisted Reproduction Causes Reduced Fetal Growth Associated with Downregulation of Paternally Expressed Imprinted Genes That Enhance Fetal Growth / B. Li, S. Chen, N. Tang et al. // Biol. Reprod. 2016 Jan 13. pii: biolreprod.115.136051.

Lim D. Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies / D. Lim, S.C. Bowdin, L. Tee et al. // Hum. Reprod. 2009 Mar; 24 (3): 741-7. doi: 10.1093/humrep/den406.

Liu S. Effect of gonadotropins on dynamic events and global deoxyribonucleic acid methylation during in vitro maturation of oocytes: an animal model / S. Liu, H.L. Feng, D. Marchesi, Z.J. Chen, A. Hershlag // Fertil. Steril. 2011 Mar 15; 95 (4): 1503-6.e1-3. doi: 10.1016/j.fertnstert.2010.09.049.

Lou H. Assisted reproductive technologies impair the expression and methylation of insulin-induced gene 1 and sterol regulatory element-binding factor 1 in the fetus and placenta / H. Lou, F. Le, Y. Zheng et al. // Fertil. Steril. 2014 Apr; 101 (4): 974-980.e2. doi: 10.1016/j.fertnstert.2013.12.034.

Ludwig M. Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples / M. Ludwig, A. Katalinic, S. Gross et al. // J. Med. Genet. 2005 Apr; 42 (4): 289-91. doi: 10.1136/jmg.2004.026930.

Martinez D. In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving al.tered lxra DNA methylation / D. Martinez, T. Pentinat, S. Ribo et al. // Cell. Metab. 2014 Jun 3; 19 (6): 941-51. doi: 10.1016/j.cmet.2014.03.026.

Melamed N. Comparison of genome-wide and gene-specific DNA methylation between ART and naturally conceived pregnancies / N. Melamed, S. Choufani, L.E. Wilkins-Haug, G. Koren, R. Weksberg // Epigenetics. 2015; 10 (6): 474-83. doi: 10.4161/15592294.2014.988041.

Menezo Y. DNA methylation and gene expression in IVF / Y. Menezo, K. Elder, M. Benkhalifa, B. Dale // Reprod. Biomed. Online. 2010 Jun; 20 (6): 709-10. doi: 10.1016/j.rbmo.2010.02.016.

Mundim T.C. Changes in gene expression profiles of bovine embryos produced in vitro, by natural ovulation, or hormonal superstimulation / T.C. Mundim, A.F. Ramos, R. Sartori et al. // Genet. Mol. Res. 2009 Nov 24; 8 (4): 1398-407. doi: 10.4238/vol8-4gmr646.

Nelissen E.C. Placentas from pregnancies conceived by IVF/ICSI have a reduced DNA methylation level at the H19 and MEST differentially methylated regions / E.C. Nelissen, J.C. Dumoulin, A. Daunay et al. // Hum. Reprod. 2013 Apr; 28 (4): 1117-26. doi: 10.1093/humrep/des459.

Obeid R. The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway // Nut­rients. 2013 Sep 9; 5 (9): 3481-95. doi: 10.3390/nu5093481.

Okun N., Sierra S. Pregnancy outcomes after assisted human reproduction // J. Obstet Gynaecol. Can. 2014 Jan; 36 (1): 64-83. PMID: 24444289.

Ørstavik K.H. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection / K.H. Ørstavik, K. Eiklid, C.B. van der Hagen et al. // Am. J. Hum. Genet. 2003 Jan; 72 (1): 218-9. PMID: 12549484.

Owen C.M., Segars J.H. Jr. Imprinting disorders and assisted reproductive technology // Semin. Reprod. Med. 2009 Sep; 27 (5): 417-28. doi: 10.1055/s‑0029-1237430.

Padmanabhan N., Watson E.D. Lessons from the one-carbon metabolism: passing it al.ong to the next generation // Reprod. Biomed. Online. 2013 Dec; 27 (6): 637-43. doi: 10.1016/j.rbmo.2013.09.008.

Pinborg A. Epigenetics and assisted reproductive technologies / A. Pinborg, A. Loft, L.B. Romundstad, U.B. Wennerholm // Acta Obstet. Gynecol. Scand. 2016 Jan; 95 (1): 10-5. doi: 10.1111/aogs.12799.

Radford E.J. An unbiased assessment of the role of imprinted genes in an intergenerational model of developmental programming / E.J. Radford, E. Isganaitis, J. Jimenez-Chillaron et al. // PLoS Genet. 2012; 8 (4): e1002605. doi: 10.1371/journal.pgen.1002605.

Rancourt R.C., Harris H.R., Michels K.B. Methylation levels at imprinting control regions are not al.tered with ovulation induction or in vitro fertilization in a birth cohort // Hum. Reprod. 2012 Jul; 27 (7): 2208-16. doi: 10.1093/humrep/des151.

Rehan V.K. Perinatal nicotine-induced transgenerational asthma / V.K. Rehan, J. Liu, R. Sakurai, J.S. Torday // Am. J. Physiol. Lung Cell Mol. Physiol. 2013 Oct 1; 305 (7): L501-7. doi: 10.1152/ajplung.00078.2013.

Rossignol S. The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region / S. Rossignol, V. Steunou, C. Chalas et al. // J. Med. Genet. 2006 Dec; 43 (12): 902-7. doi: 10.1136/jmg.2006.042135.

Sato A. Aberrant DNA methylation of imprinted loci in superovulated oocytes / A. Sato, E. Otsu, H. Negishi, T. Utsunomiya, T. Arima // Hum. Reprod. 2007 Jan; 22 (1): 26-35. doi: 10.1093/humrep/del316.

Seisenberger S. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers // S. Seisenberger, J.R. Peat, T.A. Hore et al. // Philos Trans R Soc Lond B Biol. Sci. 2013 Jan 5; 368 (1609): 20110330. doi: 10.1098/rstb.2011.0330.

Skinner M.K. Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol. 2014 Dec; 398 (1-2): 4-12. doi: 10.1016/j.mce.2014.07.019.

Skinner M.K. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line / M.K. Skinner, C. Guerrero-Bosagna, M. Haque et al. // PLoS One. 2013 Jul 15; 8 (7): e66318. doi: 10.1371/journal.pone.0066318.

Skinner M.K., Manikkam M., Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology // Trends Endocrinol. Metab. 2010 Apr; 21 (4): 214-22. doi: 10.1016/j.tem.2009.12.007.

Song S. DNA methylation differences between in vitro- and in vivo-conceived children are associated with ART procedures rather than infertility / S. Song, J. Ghosh, M. Mainigi et al. // Clin. Epigenetics. 2015 Apr 8; 7 (1): 41. doi: 10.1186/s13148-015-0071-7.

Steegers-Theunissen R.P. The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism / R.P. Steegers-Theunissen, J. Twigt, V. Pestinger, K.D. Sinclair // Hum. Reprod. Update. 2013 Nov-Dec; 19 (6): 640-55. doi: 10.1093/humupd/dmt041.

Sutcliffe A.G. Assisted reproductive therapies and imprinting disorders — ​a preliminary British survey / Sutcliffe A.G., Peters C.J., Bowdin S. et al. // Hum. Reprod. 2006 Apr; 21 (4): 1009-11. doi: 10.1093/humrep/dei405.

Tee L. Epimutation profiling in Beckwith-Wiedemann syndrome: relationship with assisted reproductive technology / L. Tee, D.H. Lim, R.P. Dias et al. // Clin. Epigenetics. 2013 Dec 10; 5 (1): 23. doi: 10.1186/1868-7083-5-23.

Tierling S. Assisted reproductive technologies do not enhance the variability of DNA methylation imprints in human / S. Tierling, N.Y. Souren, J. Gries et al. // J. Med. Genet. 2010 Jun; 47 (6): 371-6. doi: 10.1136/jmg.2009.073189.

Turan N. Inter- and intra-individual variation in al.lele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology / N. Turan, S. Katari, L.F. Gerson et al. // PLoS Genet. 2010 Jul 22; 6 (7): e1001033. doi: 10.1371/journal.pgen.1001033.

Uyar A., Seli E. The impact of assisted reproductive technologies on genomic imprinting and imprinting disorders // Curr. Opin. Obstet. Gynecol. 2014 Jun; 26 (3): 210-21. doi: 10.1097/GCO.0000000000000071.

Veenendaal M.V. Transgenerational effects of prenatal exposure to the 1944-45 Dutch famine / M.V. Veenendaal, R.C. Painter, S.R. de Rooij et al. // BJOG. 2013 Apr; 120 (5): 548-53. doi: 10.1111/1471-0528.12136.

White C.R. High Frequency of Imprinted Methylation Errors in Human Preimplantation Embryos / C.R. White, M.M. Denomme, F.R. Tekpetey et al. // Sci Rep. 2015 Dec 2; 5: 17311. doi: 10.1038/srep17311.

Wolstenholme J.T. Gestational exposure to bisphenol a produces transgenerational changes in behaviors and gene expression/ J.T. Wolstenholme, M. Edwards, S.R. Shetty et al. // Endocrinology. 2012 Aug; 153 (8): 3828-38. doi: 10.1210/en.2012-1195.

Xu X.R. Epigenetic inheritance of paternally expressed imprinted genes in the testes of ICSI mice / X.R. Xu, R.G. Fu, L.Y. Wang et al. // Curr. Pharm. Des. 2014; 20 (11): 1764-71. doi: 10.2174/13816128113199990520.

Young L.E. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture / L.E. Young, K. Fernandes, T.G. McEvoy et al. // Nat. Genet. 2001 Feb; 27 (2): 153-4. doi: 10.1038/84769.

Zechner U. Quantitative methylation analysis of developmentally important genes in human pregnancy losses after ART and spontaneous conception / Zechner U., Pliushch G., Schneider E. et al. // Mol. Hum. Reprod. 2010 Sep; 16 (9): 704-13. doi: 10.1093/molehr/gap107.

Zhang B. Both the folate cycle and betaine-homocysteine methyltransferase contribute methyl groups for DNA methylation in mouse blastocysts / Zhang B., Denomme M.M., White C.R. et al. // FASEB J. 2015 Mar; 29 (3): 1069-79. doi: 10.1096/fj.14-261131.




Copyright (c) 2017 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2019

 

   Seo анализ сайта