DOI: https://doi.org/10.22141/2224-0551.5.65.2015.74907

Angelman Syndrome. Part 1 (Etiology and Pathogenesis)

A.Ye. Abaturov, L.L. Petrenko, Ye.L. Krivusha

Abstract


The paper presents the current understanding of the mechanisms of genetic changes in Angelman syndrome. This article contains the data on the prevalence and the risk of inheritance of different genetic defects in patients with Angelman syndrome. Pathogenetic basis for the development of the main clinical manifestations of Angelman syndrome: seizures, cognitive deficit, behavioral disorders, imbalance in wakefulness and sleep hours, trophic disorders — are described. It is shown that changes in Arc gene expression are associated not only with Angelman syndrome but also with some other dise­ases.


Keywords


Angelman syndrome

References


Балашова А.Н., Дитятев А.Э., Мухина И.В. Формы и механизмы гомеостатической синаптической пластичности // Современные технологии в медицине. — 2013. — Т. 5, № 2. — С. 98-107.

Гончаренко Г.Б. Діагностика синдрому Ангельмана у дітей / Г.Б. Гончаренко, Ю.В. Дудєріна, В.О. Галаган, Ш.А. Кульбалаєва, В.В. Куракова // Украинский научно-медицинский молодежный журнал. — 2013. — № 2. — С. 29-32.

Adachi M., Monteggia L.M. Decoding transcriptional repressor complexes in the adult central nervous system // Neuropharmacology. — 2014 May. — 80. — 45-52. — doi: 10.1016/j.neuropharm.2013.12.024.

Angelman H. «Puppet» children. A report on three cases // Dev. Med. Child. Neurol. — 1965. — 7(6). — 681-688.

Anggono V., Huganir R.L. Regulation of AMPA receptor trafficking and synaptic plasticity // Curr. Opin. Neurobiol. — 2012 Jun. — 22(3). — 461-9. — doi: 10.1016/j.conb.2011.12.006.

Baudry M. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome / Baudry M., Kramar E., Xu X. et al. // Neurobiol. Dis. — 2012 Aug. — 47(2). — 210-5. — doi: 10.1016/j.nbd.2012.04.002.

Bonnet-Brilhault F. GABA/Glutamate synaptic pathways targeted by integrative genomic and electrophysiological explorations distinguish autism from intellectual disability / F. Bonnet-Brilhault, S. Alirol, R. Blanc et al. // Mol. Psychiatry. — 2015, Jun 9. — doi: 10.1038/mp.2015.75.

Bosch M., Hayashi Y. Structural plasticity of dendritic spines // Curr. Opin. Neurobiol. — 2012 Jun. — 22(3). — 383-8. — doi: 10.1016/j.conb.2011.09.002.

Bourne J.N., Harris K.M. Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP // Hippocampus. — 2011 Apr. — 21(4). — 354-73. — doi: 10.1002/hipo.20768.

Buhr E.D., Takahashi J.S. Molecular components of the Mammalian circadian clock / Handb. Exp. Pharmacol. — 2013. — 217. — 3-27. — doi: 10.1007/978-3-642-25950-0_1.

Buiting K. Clinical utility gene card for: Angelman Syndrome / K. Buiting, J. Clayton-Smith, D.J. Driscoll // Eur. J. Hum. Genet. — 2015 Feb. — 23(2). — doi: 10.1038/ejhg.2014.93.

Buiting K. Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect / K. Buiting, S. Gross, C. Lich, G. Gillessen-Kaesbach, O. el-Maarri, B. Horsthemke // Am. J. Hum. Genet. — 2003 Mar. — 72(3). — 571-7. doi: 10.1086/367926.

Burnside R.D. Microdeletion/microduplication of proximal 15q11.2 between BP1 and BP2: a susceptibility region for neurological dysfunction including developmental and language delay / R.D. Burnside, R. Pasion, F.M. Mikhail et al. // Hum. Genet. — 2011 Oct. — 130(4). — 517-28. — doi: 10.1007/s00439-011-0970-4.

Butler M.G. Array comparative genomic hybridization (aCGH) analysis in Prader-Willi syndrome / M.G. Butler, W. Fischer, N. Kibiryeva, D.C. Bittel // Am. J. Med. Genet. A. — 2008, Apr 1. — 146A(7). — 854-60. — doi: 10.1002/ajmg.a.32249.

Carr T.D. Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors / T.D. Carr, R.P. Feehan, M.N. Hall, M.A. Rüegg, L.M. Shantz // Carcinogenesis. — 2015 Apr. — 36(4). — 487-97. — doi: 10.1093/carcin/bgv012.

Chamberlain S.J. RNAs of the human chromosome 15q11-q13 imprinted region // Wiley Interdiscip Rev. RNA. — 2013 Mar — Apr. — 4(2). — 155-66. — doi: 10.1002/wrna.1150.

Chamberlain S.J., Lalande M. Angelman syndrome, a genomic imprinting disorder of the brain // J. Neurosci. — 2010. — 30. — 9958-9963. — doi: 10.1523/JNEUROSCI.1728-10.2010.

Chater T.E., Goda Y. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity // Front. Cell. Neurosci. — 2014, Nov 27. — 8. — 401. — doi: 10.3389/fncel.2014.00401.

Clayton-Smith J., Laan L. Angelman syndrome: a review of the clinical and genetic aspects // J. Med. Genet. — 2003 Feb. — 40(2). — 87-95. — doi: 10.1136/jmg.40.2.87.

Dagli A.I., Mueller J., Williams C.A. Angelman Syndrome / Pagon R.A., Adam M.P., Ardinger H.H., Wallace S.E., Amemiya A., Bean L.J.H., Bird T.D., Dolan C.R., Fong C.T., Smith R.J.H., Stephens K. — GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle, 1993-2015. — 1998, Sep 15 [updated 2015 May 14]. — PMID: 20301323.

DeFelipe J. The dendritic spine story: an intriguing process of discovery // Front. Neuroanat. — 2015, Mar 5. — 9. — 14. — doi: 10.3389/fnana.2015.00014.

Dindot S.V. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morpho­logy / S.V. Dindot, B.A. Antalffy, M.B. Bhattacharjee, A.L. Beaudet // Hum. Mol. Genet. — 2008, Jan 1. — 17(1). — 111-8. — doi: 10.1093/hmg/ddm288.

Ebrahimi-Fakhari D., Sahin M. Autism and the synapse: emerging mechanisms and mechanism-based therapies // Curr. Opin. Neurol. — 2015 Apr. — 28(2). — 91-102. — doi: 10.1097/WCO.0000000000000186.

Etain B. Association between circadian genes, bipolar disorders and chronotypes / B. Etain, S. Jamain, V. Milhiet et al. // Chronobiol. Int. — 2014 Aug. — 31(7). — 807-14. — doi: 10.3109/07420528.2014.906445.

Fiumara A. Epilepsy in patients with Angelman syndrome / A. Fiumara, A. Pittalà, M. Cocuzza, G. Sorge // Ital. J. Pediatr. — 2010, Apr 16. — 36. — 31. — doi: 10.1186/1824-7288-36-31.

Fletcher B.R. A fine balance: Regulation of hippocampal Arc/Arg3.1 transcription, translation and degradation in a rat mo­del of normal cognitive aging/ B.R. Fletcher, G.S. Hill, J.M. Long et al. // Neurobiol. Learn Mem. — 2014 Nov. — 115. — 58-67. — doi: 10.1016/j.nlm.2014.08.007.

Frankfurt M., Luine V. The evolving role of dendritic spines and memory: Interaction(s) with estradiol // Horm. Behav. — 2015, May 17. — Рii: S0018-506X(15)00085-9. — doi: 10.1016/j.yhbeh.2015.05.004.

Galanopoulou A.S. GABA(A) receptors in normal development and seizures: friends or foes? // Curr. Neuropharmacol. — 2008 Mar. — 6(1). — 1-20. — doi: 10.2174/157015908783769653.

Godavarthi S.K. Defective glucocorticoid hormone receptor signaling leads to increased stress and anxiety in a mouse model of Angelman syndrome / S.K. Godavarthi, P. Dey, M. Maheshwari, N.R. Jana // Hum. Mol. Genet. — 2012, Apr 15. — 21(8). — 1824-34. — doi: 10.1093/hmg/ddr614.

Godavarthi S.K., Sharma A., Jana N.R. Reversal of reduced parvalbumin neurons in hippocampus and amygdala of Angelman syndrome model mice by chronic treatment of fluoxetine // J. Neurochem. — 2014 Aug. — 130(3). — 444-54. — doi: 10.1111/jnc.12726.

Gold M.G. A frontier in the understanding of sy­naptic plasticity: solving the structure of the postsynaptic density // Bioessays. — 2012 Jul. — 34(7). — 599-608. — doi: 10.1002/bies.201200009.

Graber T.E., McCamphill P.K., Sossin W.S. A recollection of mTOR signaling in learning and memory // Learn Mem. — 2013, Sep 16. — 20(10). — 518-30. — doi: 10.1101/lm.027664.112.

Greer P.L. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc / P.L. Greer, R. Hanayama, B.L. Bloodgood et al. // Cell. — 2010, Mar 5. — 140(5). — 704-16. — doi: 10.1016/j.cell.2010.01.026.

Gregianin E. A novel SACS mutation results in non-ataxic spastic paraplegia and peripheral neuropathy / E. Gregianin, G. Vazza, E. Scaramel // Eur. J. Neurol. — 2013 Nov. — 20(11). — 1486-91. — doi: 10.1111/ene.12220.

Hoeffer C.A., Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease // Trends Neurosci. — 2010 Feb. — 33(2). — 67-75. — doi: 10.1016/j.tins.2009.11.003.

Horsthemke B., Buiting K. Genomic imprinting and imprinting defects in humans // Adv. Genet. — 2008. — 61. — 225-46. — doi: 10.1016/S0065-2660(07)00008-9.

Huang W. Circadian rhythms, sleep, and metabolism / W. Huang, K.M. Ramsey, B. Marcheva, J. Bass // J. Clin. Invest. — 2011 Jun. — 121(6). — 2133-41. — doi: 10.1172/JCI46043.

Huang W. mTORC2 controls actin polymerization required for consolidation of long-term memory / W. Huang, P.J. Zhu, S. Zhang et al. // Nat. Neurosci. — 2013 Apr. — 16(4). — 441-8. — doi: 10.1038/nn.3351.

Huganir R.L., Nicoll R.A. AMPARs and synaptic plasticity: the last 25 years // Neuron. — 2013, Oct 30. — 80(3). — 704-17. — doi: 10.1016/j.neuron.2013.10.025.

Irwin S.A. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination / S.A. Irwin, B. Patel, M. Idpuulapati et al. // Am. J. Med. Genet. — 2001, Jan 15. — 98(2). — 161-7. — doi: 10.1002/1096-8628(20010115)98:2<161::AID-AJMG1025> 3.0.CO;2-B.

Jana N.R. Understanding the pathogenesis of Angelman syndrome through animal models // Neural. Plast. — 2012. — 2012. — 710943. — doi: 10.1155/2012/710943.

Jiang M. Dendritic arborization and spine dynamics are abnormal in the mouse model of MECP2 duplication syndrome / M. Jiang, R.T. Ash, S.A. Baker et al. // J. Neurosci. — 2013, Dec 11. — 33(50). — 19518-33. — doi: 10.1523/JNEUROSCI.1745-13.2013.

Kelly M.P., Deadwyler S.A. Experience-dependent regulation of the immediate-early gene arc differs across brain regions // J. Neurosci. — 2003, Jul 23. — 23(16). — 6443-51. — PMID: 12878684.

Kessels H.W., Malinow R. Synaptic AMPA receptor plasticity and behavior // Neuron. — 2009, Feb 12. — 61(3). — 340-50. — doi: 10.1016/j.neuron.2009.01.015.

Korb E., Finkbeiner S. Arc in synaptic plasticity: from gene to behavior // Trends Neurosci. — 2011 Nov. — 34(11). — 591-8. — doi: 10.1016/j.tins.2011.08.007.

Kühnle S. Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc / S. Kühnle, B. Mothes, K. Matentzoglu, M. Scheffner // Proc. Natl Acad. Sci USA. — 2013, May 28. — 110(22). — 8888-93. — doi: 10.1073/pnas.1302792110.

Lipton J.O., Sahin M. The neurology of mTOR // Neuron. — 2014, Oct 22. — 84(2). — 275-91. — doi: 10.1016/j.neuron.2014.09.034.

Lisman J., Yasuda R., Raghavachari S. Mechanisms of CaMKII action in long-term potentiation // Nat. Rev. Neurosci. — 2012, Feb 15. — 13(3). — 169-82. — doi: 10.1038/nrn3192.

Liu J. Evidence for mTOR pathway activation in a spectrum of epilepsy-associated pathologies / J. Liu, C. Reeves, Z. Michalak, A. Coppola, B. Diehl, S.M. Sisodiya, M. Thom // Acta Neuropathol Commun. — 2014, Jul 8. — 2. — 71. — doi: 10.1186/2051-5960-2-71.

Meng L. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA / L. Meng, A.J. Ward, S. Chun, C.F. Bennett, A.L. Beaudet, F. Rigo // Nature. — 2015, Feb 19. — 518(7539). — 409-12. — doi: 10.1038/nature13975.

Meng L., Person R.E., Beaudet A.L. Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a // Hum. Mol. Genet. — 2012, Jul 1. — 21(13). — 3001-12. — doi: 10.1093/hmg/dds130.

Mertz L.G. Angelman syndrome in Denmark. birth incidence, genetic findings, and age at diagnosis / L.G. Mertz, R. Christensen, I. Vogel, J.M. Hertz, K.B. Nielsen, K. Grønskov, J.R. Østergaard // Am. J. Med. Genet. A. — 2013 Sep. — 161A(9). — 2197-203. — doi: 10.1002/ajmg.a.36058.

Olsen R.W., Sieghart W. International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update // Pharmacol. Rev. — 2008 Sep. — 60(3). — 243-60. — doi: 10.1124/pr.108.00505.

Ostendorf A.P., Wong M. mTOR inhibition in epilepsy: rationale and clinical perspectives // CNS Drugs. — 2015 Feb. — 29(2). — 91-9. — doi: 10.1007/s40263-014-0223-x.

Pelc K. Epilepsy in Angelman syndrome / K. Pelc, S.G. Boyd, G. Cheron, B. Dan // Seizure. — 2008 Apr. — 17(3). — 211-7. — doi: http://dx.doi.org/10.1016/j.seizure.2007.08.004.

Ramsden S.C. Practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes / S.C. Ramsden, J. Clayton-Smith, R. Birch, K. Buiting // BMC Med. Genet. — 2010, May 11. — 11. — 70. — doi: 10.1186/1471-2350-11-70.

Robinson W.P. Somatic segregation errors predominantly contribute to the gain or loss of a paternal chromosome leading to uniparental disomy for chromosome 15 / W.P. Robinson, S.L. Christian, B.D. Kuchinka et al. // Clin. Genet. — 2000 May. — 57(5). — 349-58. — doi: 10.1034/j.1399-0004.2000.570505.x

Ronchi V.P. The active form of E6-associated protein (E6AP)/UBE3A ubiquitin ligase is an oligomer / V.P. Ronchi, J.M. Klein, D.J. Edwards, A.L. Haas // J. Biol. Chem. — 2014, Jan 10. — 289(2). — 1033-48. — doi: 10.1074/jbc.M113.517805.

Rosenfeld J.A. Deletions flanked by breakpoints 3 and 4 on 15q13 may contribute to abnormal phenotypes / J.A. Rosenfeld, L.E. Stephens, J. Coppinger et al. // Eur. J. Hum. Genet. — 2011 May. — 19(5). — 547-54. — doi: 10.1038/ejhg.2010.237.

Rotin D., Kumar S. Physiological functions of the HECT fa­mily of ubiquitin ligases // Nat. Rev. Mol. Cell. Biol. — 2009 Jun. — 10(6). — 398-409. — doi: 10.1038/nrm2690.

Sadikovic B. Mutation Update for UBE3A variants in Angelman syndrome / B. Sadikovic, P. Fernandes, V.W. Zhang et al. // Hum. Mutat. — 2014 Dec. — 35(12). — 1407-17. — doi: 10.1002/humu.22687.

Scheiffele P., Beg A.A. Neuroscience: Angelman syndrome connections // Nature. — 2010, Dec 16. — 468(7326). — 907-8. doi: 10.1038/468907a.

Shepherd J.D., Bear M.F. New views of Arc, a master regulator of synaptic plasticity // Nat. Neurosci. — 2011 Mar. — 14(3). — 279-84. — doi: 10.1038/nn.2708.

Shi S.Q. Ube3a imprinting impairs circadian robustness in Angelman syndrome models / S.Q. Shi, T.J. Bichell, R.A. Ihrie, C.H. Johnson // Curr. Biol. — 2015, Mar 2. — 25(5). — 537-45. — doi: 10.1016/j.cub.2014.12.047.

Sossin W.S., Lacaille J.C. Mechanisms of translational regulation in synaptic plasticity // Curr. Opin. Neuro­biol. — 2010 Aug. — 20(4). — 450-6. — doi: 10.1016/j.conb.2010.03.011.

Spratt D.E., Walden H., Shaw G.S. RBR E3 ubiquitin liga­ses: new structures, new insights, new questions // Biochem. J. — 2014, Mar 15. — 458(3). — 421-37. — doi: 10.1042/BJ20140006.

Steward O. Localization and local translation of Arc/Arg3.1 mRNA at synapses: some observations and paradoxes / O. Steward, S. Farris, P.S. Pirbhoy, J. Darnell, S.J. Driesche // Front. Mol. Neurosci. — 2015, Jan 12. — 7. — 101. — doi: 10.3389/fnmol.2014.00101.

Tai H.C., Schuman E.M. Preview. Angelman syndrome: finding the lost arc // Cell. — 2010, Mar 5. — 140(5). — 608-10. — doi: 10.1016/j.cell.2010.02.019.

Tanaka M. Effects on promoter activity of common SNPs in 5' region of GABRB3 exon 1A / M. Tanaka, J.N. Bailey, D. Bai, Y. Ishikawa-Brush, A.V. Delgado-Escueta, R.W. Olsen // Epilepsia. — 2012 Aug. — 53(8). — 1450-6. — doi: 10.1111/j.1528-1167.2012.03572.x.

Tanaka M. GABRB3, Epilepsy, and Neurodevelopment / M. Tanaka, T.M. DeLorey, A. Delgado-Escueta, R.W. Olsen // Noebels J.L., Avoli M., Rogawski M.A., Olsen R.W., Delgado-Escueta A.V. Jasper’s Basic Mechanisms of the Epilepsies [Internet]. — 4th edition. — Bethesda (MD): National Center for Biotechnology Information (US), 2012.

van Woerden G.M. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation/ G.M. van Woerden, K.D. Harris, M.R. Hojjati et al. // Nat. Neurosci. — 2007 Mar. — 10(3). — 280-2. — doi:10.1038/nn1845.

Vande Pol S.B., Klingelhutz A.J. Papillomavirus E6 oncoproteins // Virology. — 2013 Oct. — 445(1–2). — 115-37. — doi: 10.1016/j.virol.2013.04.026.

Wang F., Lerman A., Herrmann J. Dysfunction of the ubiquitin-proteasome system in atherosclerotic cardiovascular disease // Am. J. Cardiovasc. Dis. — 2015, Mar 10. — 5(1). — 83-100.

Wang P. Neuronal gamma-aminobutyric acid (GABA) type A receptors undergo cognate ligand chaperoning in the endoplasmic reticulum by endogenous GABA / P. Wang, R.S. Eshaq, C.K. Meshul, C. Moore, R.L. Hood, N.J. Leidenheimer // Front. Cell. Neurosci. — 2015, May 18. — 9. — 188. — doi: 10.3389/fncel.2015.00188.

Weston M.C., Chen H., Swann J.W. Multiple roles for mammalian target of rapamycin signaling in both glutamatergic and GABAergic synaptic transmission // J Neurosci. — 2012, Aug 15. — 32(33). — 11441-52. — doi: 10.1523/JNEUROSCI.1283-12.2012.




Copyright (c) 2016 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2018

 

   Seo анализ сайта