Drug Management of Antimicrobial Peptide Production in Cystic Fibrosis in Children

O.Ye. Abaturov, V.L. Babych


This article provides information about drug management of antimicrobial peptide production in cystic fibrosis in children. The data are provided on the types and classes of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, and their association with clinical features of cystic fibrosis. The value of antimicrobial peptides in chronic infectious-inflammatory process of the respiratory organs in cystic fibrosis is described. The molecular mechanisms of vitamin D effect on the expression of antimicrobial peptides in the respiratory tract in cystic fibrosis were shown, as well as new limitations of using vitamin D in the therapy of children with this disease were analyzed.


cystic fibrosis; children; antimicrobial peptides; vitamin D


Abaturov AE, Gerasimenko ON, Visochina IL, Zavgorodnyaya NJ. [Defensins and defensin-dependent diseases]. Оdessa: Izdatelstvo VMV; 2011. 265 p. Russian.

Amelina EL, Krasovsky SA. [Inhaled tobramycin in the treatment of chronic Pseudomonas aeruginosa infections in cystic fibrosis]. Рulmonology. 2013;4:109-114. Russian.

Bobrovnichy VI. [Current approaches to diagnosis and treatment of Pseudomonas infections in patients with cystic fibrosis]. Medical Journal. 2012;1(39):4-9. Russian.

Gembitskaya TE, Ivashchenko TE, Chermensky AG, Nasyhova Y. [Phenotypic features and genetic heterogeneity of patients with late onset and course of cystic fibrosis nonclassical]. Рulmonology. 2014;1:66-70. Russian.

Kapranov NI. [Modern diagnostics, therapy and social adaptation of patients with cystic fibrosis in the Russian Federation]. Pediatrics. 2014;93(4):6-10. Russian.

Lezhenko GА, Abaturov АЕ, Pashkovа АЕ. Pathogenetic values antimicrobial peptides have implementation of antibacterial protection in children with cystic fibrosis. Child Health. – 2013:3(46). Ukrainian.

Cystic fibrosis in Ukraine: a problem that needs immediate action // Modern pediatrics. 2014;3:23-27. Ukrainian.

Simonova OI, Gorinova Y, Lazareva AV et al. [Addressing the chronic Pseudomonas aeruginosa infection in children with cystic fibrosis]. Problems of modern pediatrics. 2014;13(1):66-73. Russian.

Feklin VA, Kandiba VP, Koliushko EG et al. [Microbial landscape of the airways in cystic fibrosis in children]. Bulletin of the Vinnitsa National Medical University. 2009;13(1/2):342. Russian.

Chernuha MY, Avetisyan LR, Shahinian IA et al. [Phenotypic and genotypic characteristics strains of Burkholderia cepacia complex, isolated from patients with cystic fibrosis]. Pediatrics. 2014;93(4):24-29. Russian.

Albercht MT, Wang W, Shamova O, Lehrer RI, Schiller NL. Binding of protegrin-1 to Pseudomonas aeruginosa and Burkholderia cepacia. Respiratory Research. 2002:3(1);18-29.

APD: the Antimicrobial Peptide Database. -

Belostotsky V., Mughal Z. A single high dose of ergocalciferol can be used to boost 25-hydroxyvitamin D levels in children. Pediatr. Nephrol. 2009;24:625–626.

Bikle D.D. Vitamin D regulation of immune function. Vitam. Horm. 2011;86:1-21. doi: 10.1016/B978-0-12-386960-9.00001-0.

Boyle M, Noschese M, Watts S et al. Failure of high dose ergocalciferol to correct vitamin D deficiency in adults with cystic fibrosis. Am J Respir Crit Care Med. 2005;172:212. doi: 10.1164/rccm.200403-387OC.

Brandt T, Breitenstein S, von der Hardt H, Tummler B. DNA concentration and length in sputum of patients with cystic fibrosis during inhalation with recombinant human DNase. Thorax. 1995;50:880-882. PMID: 7570441.

Brogden K. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005;3:238-250. PMID: 15703760.

Chesdachai S, Tangpricha V. Treatment of vitamin D deficiency in cystic fibrosis. The Journal of Steroid Biochemistry and Molecular Biology. Sep 2015. pii: S0960-0760(15)30073-X. - doi: 10.1016/j.jsbmb.2015.09.013.

Darling KEA, Dewar A, Evans TJ. Role of the cystic fibrosis transmembrane conductance regulator in internalization of Pseudomonas aeruginosa by polarized respiratory epithelial cells. Cellular Microbiology. June 2004;6(6):521–533. DOI: 10.1111/j.1462-5822.2004.00380.x

Diamond G, Beckloff N, Weinberg A, Kisich KO. The Roles of Antimicrobial Peptides in Innate Host Defense. Curr Pharm. 2009;15(21):2377–2392. PMCID: PMC2750833.

Diamond T, Ho K, Rohl P, Meerkin M. Annual intramuscular injection of megadose of cholecalciferol for treatment of vitamin D deficiency: efficacy and safety data. Med J Aust 2005;183(1):10–12.

Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms Clin Microbiol Rev. 2002;15:167-193. PMID: 11932229.

European Cystic Fibrosis Patient Registry. Version 01.2014. Annual Data Report. Cystic Fibrosis Foundation. -

Ferec C, Cutting GR. Assessing the Disease-Liability of Mutations in CFTR. Cold Spring Harb Perspect Med. 2012;2(12):009480. doi: 10.1101/cshperspect.a009480.

Ferguson JH, Chang AB. Vitamin D supplementation for cystic fibrosis. Cochrane Database Syst Rev. 2014;14(5):CD007298. doi: 10.1002/14651858.CD007298.pub4.

Green D, Carson K, Leonard A et al. Current treatment recommendations for correcting vitamin D deficiency in pediatric patients with cystic fibrosis are inadequate J Pediatr. 2008;554–559. PMID: 15992330.

Grossmanna RE, Zughaierbc SM, Kumarid M et al. Pilot study of vitamin D supplementation in adults with cystic fibrosis pulmonary exacerbation. Dermato-Endocrinology. 2012;4(2):191-197. DOI:10.4161/derm.20332.

Herr Ch, Niederstraßer J, Bals R.Vitamin D increases anti-microbial activity in human airway epithelial cells. Large Image. 22nd Annual Congress, Munich, Germany 6–2014:44 (58).

Hiemstra PS, Amatngalim GD, van der Does AM, Taube Ch. Antimicrobial peptides and innate lung defenses: Role in infectious and non-infectious lung diseases and therapeutic applications. Chest. 2015. doi:10.1378/chest.15-1353.

Kerem B, Kerem E. The molecular basis for disease variability in cystic fibrosis. Eur J Hum Genet. 1996;4:65–73.

Knudsen PK, Olesen HV, Hiniby N et al. Differences in prevalence and treatment of Pseudomonas aeruginosa in cystic fibrosis centres in Denmark, Norway and Sweden. Journal of Cystic Fibrosis. 2009;8:135142.

Maurya N, Awasthi S, Dixit P. Association of CFTR gene mutation with bronchial asthma / N. Maurya, // Indian J. Med. Res. – 2012. – Vol. 135(4). – P. 469–478. - PMID: 22664493.

Nakatsuji T, Gallo RL. Antimicrobial peptides: Old molecules with new ideas. J Invest Dermatol. 2012;132:887–895. doi: 10.1038/jid.2011.387.

Nash EF, Thomas A, Whitmill R et al. «Cepacia syndrome» associated with Burkholderia cepacia (genomovar I) infection with cystic fibrosis. Pediatr Pulmonal. 2011;46(5):512–514. doi: 10.1002/ppul.21404.

Norton L, Page S, Sheehan M et al. Prevalence of Inadequate Vitamin D Status and Associated Factors in Children With Cystic Fibrosis. Nutr Clin Pract. 2015;30(1):111-116. doi: 10.1177/0884533614562839.

Oceandy D, McMorran BJ, Smith SN, Schreiber R, Kunzelmann K, Alton EWFW, Hume DA, Wainwright BJ. Gene complementation of airway epithelium in the cystic fibrosis mouse is necessary and sufficient to correct the pathogen clearance and inflammatory abnormalities. Hum. Mol. Genet. 2002;11(9):1059-1067. doi: 10.1093/hmg/11.9.1059.

Patrick AE, Karamyshev AL, Millen L, Thomas PJ. Alteration of CFTR transmembrane span integration by disease-causing mutations. Mol Biol Cell. 2011;22(23):4461-4471. doi: 10.1091/mbc.E11-05-0396.

Pattison SH, Rogers GB, Crockard M, Elborn JS, Tunney MM. Molecular detection of CF lung pathogens: Current status and future potential. Journal of Cystic Fibrosis. 2013;12(3):194-205. doi: 10.1016/j.jcf.2013.01.007.

Pier, GB, Grout M, Zaidi TS. Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc. Natl Acad. Sci. USA. 1997;94:12088–12093.

Pier GB. Role of the cystic fibrosis transmembrane conductance regulator in innate immunity to Pseudomonas aeruginosa infections. The National Academy of Sciences of the United States of America. 2000;97(16):8822–8828. doi: 10.1073/pnas.97.16.8822.

Pompilio A, Scocchi M, Pomponia S et al. Antibacterial and anti-biofilm effects of cathelicidin peptides against pathogens isolated from cystic fibrosis patients. Peptides. 2011;32(9):1807–1814. doi:10.1016/j.peptides.2011.08.002.

Pranting M, Negrea A, Rhen M, Andersson D. Mechanism and fitness costs of PR-39 resistance in Salmonella enterica serovar Typhimurium LT2. Antimicrob Agents Chemother. 2008;52(8);2734–2741. doi: 10.1128/AAC.00205-08.

Richards MJ, Edwards JR, Culver DH et al. Nosocomial infections in combined medical-surgical intensive care units in the United States Infect Control Hosp Epidemiol. 2000;21(8):510-515. PMID: 10968716.

Rowntree RK, Harris A. The Phenotypic Consequences of CFTR Mutations. Annals of Human Genetics. 2003;67:471-485. DOI: 10.1046/j.1469-1809.2003.00028.x.

Sermet-Gaudelus I., Bianchi ML, Garabedian M et al. European cystic fibrosis bone mineralization guidelines. J Cyst Fibros. 2011;10:S16–S23. doi: 10.1016/S1569-1993(11)60004-0.

Shepherd D, Belessis Y, Katz T et al. Single high-dose oral vitamin D3 (stoss) therapy — A solution to vitamin D deficiency in children with cystic fibrosis? Journal of Cystic Fibrosis. – 2013; 12 (2):177–182. doi:10.1016/j.jcf.2012.08.007.

Tangpricha V, Kelly A, Stephenson A et al. An update on the screening, diagnosis, management and treatment of vitamin D deficiency in individuals with cystic fibrosis: evidence-based recommendations from the cystic fibrosis foundation. J Clin Endocrinol Metab. 2012;97(4):1082–1093. DOI:

The CF mutation database 2014. -

Voglis S, Quinn K, Tullis E, Liu M et al. Human neutrophil peptides and phagocytic deficiency in bronchiectatic lungs. Am. J. Respir. Crit. Care Med. 2009:180(2);159-166.

Vandamme P, Dawyndt P. Classification and identification of Burkholderia cepacia complex: Past, present and future. Syst Appl Microbiol. 2011;34(2):87–95. doi: 10.1016/j.syapm.2010.10.002.

Verkman AS, Synder D, Tradtrantip L, Thiagarajah JR, Anderson MO. CFTR Inhibitors. Curr Pharm Des. 2013;19:3529–3541. PMID: 23331030.

Wang T-T, Nestel FP, Bourdeau V et al. Cutting Edge: 1,25-Dihydroxyvitamin D3 Is a Direct Inducer of Antimicrobial Peptide Gene Expression. The Journal of Immunology. 2004;173(5):2909-2912. doi: 10.4049/jimmunol.173.5.2909.

Wold Health Organization –

Yedery RD, Jerse AE. Augmentation of Cationic Antimicrobial Peptide Production with Histone Deacetylase Inhibitors as a Novel Epigenetic Therapy for Bacterial Infections. Antibiotics. 2015;4(1):44-61. doi:10.3390/antibiotics4010044.

Copyright (c) 2020 O.Ye. Abaturov, V.L. Babych

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта