Assessment of the trophological status of children with rheumatic diseases

Authors

  • L.I. Omelchenko State Institution “Lukianova Institute of Pediatrics, Obstetrics and Gynecology of the NAMS of Ukraine”, Kyiv, Ukraine
  • O.M. Mukvich State Institution “Lukianova Institute of Pediatrics, Obstetrics and Gynecology of the NAMS of Ukraine”, Kyiv, Ukraine
  • E.A. Belskaya State Institution “Lukianova Institute of Pediatrics, Obstetrics and Gynecology of the NAMS of Ukraine”, Kyiv, Ukraine
  • I.V. Dudka State Institution “Lukianova Institute of Pediatrics, Obstetrics and Gynecology of the NAMS of Ukraine”, Kyiv, Ukraine
  • T.A. Ludvik State Institution “Lukianova Institute of Pediatrics, Obstetrics and Gynecology of the NAMS of Ukraine”, Kyiv, Ukraine

DOI:

https://doi.org/10.22141/2224-0551.16.3.2021.233909

Keywords:

rheumatic diseases, trophological status, trophological insufficiency, leptin, children

Abstract

Background. Analyzing modern medical literature, it can be noted that in pediatric rheumatology, insufficient attention is paid to assessing the trophological status of sick children. Purpose: to investigate the nutritional status of children with various nosological forms of rheumatic diseases (RD). Materials and methods. The nutritional status of 35 children with RD was investigated, of which 5 patients had systemic variant of juvenile idiopathic arthritis (JIA), 13 patients had articular form of JIA, 4 patients had systemic lupus erythematosus, 3 patients had mixed connective tissue disease (Sharp’s syndrome), 6 children had juvenile systemic scleroderma, 4 patients had juvenile dermatomyositis. All patients underwent a generally accepted comprehensive clinical, laboratory and instrumental examination. To assess the trophological status, the body mass index and the blood serum leptin were determined by the enzyme immunoassay and the trophological status coefficient was calculated. Results. The results of the conducted studies indicate that trophological insufficiency of varying degrees manifested in 78.5 % of children with RD in a decrease in body weight, depletion of muscle mass, adipose tissue, changes in the skin and its appendages, mucous membranes, organs of vision, oral cavity, cardiovascular system. The most pronounced trophological insufficiency was found in children with systemic JIA, with juvenile scleroderma and dermatomyositis.

References

Hari A, Rostom S, Hassani A, et al. Body composition in children with juvenile idiopathic arthritis: effect of dietary intake of macronutrient: results from a cross sectional study. Pan Afr Med J. 2015 Mar 13;20:244. doi:10.11604/pamj.2015.20.244.4488.

World Health Organization (WHO). Global Database on Child Growth and Malnutrition. Available from: https://www.who.int/nutgrowthdb/en/.

Gajewski M, Rzodkiewicz P, Wojtecka-Łukasik E. The role of physiological elements in the future therapies of rheumatoid arthritis. II. The relevance of energy redistribution in the process of chronic inflammation. Reumatologia. 2015;53(1):40-45. doi:10.5114/reum.2015.50556.

Luft VM, Luft VV. Trophological status: criteria for the assessment and diagnosis of trophic failure. In: Luft VM, Bagnenko SF, editors. Rukovodstvo po klinicheskomu pitaniiu [Clinical nutrition guidelines]. 2nd ed. SPb: Art-Ekspress; 2013. 57-84 pp. (in Russian).

Racil G, Coquart JB, Elmontassar W, et al. Greater effects of high- compared with moderate-intensity interval training on cardio-metabolic variables, blood leptin concentration and ratings of perceived exertion in obese adolescent females. Biol Sport. 2016 Jun;33(2):145-52. doi:10.5604/20831862.1198633.

Matusik P, Prokopowicz Z, Norek B, Olszanecka-Glinianowicz M, Chudek J, Malecka-Tendera E. Oxidative/Antioxidative status in obese and sport trained children: a comparative study. Biomed Res Int. 2015;2015:315747. doi:10.1155/2015/315747.

Madeira I, Bordallo MA, Rodrigues NC, et al. Leptin as a predictor of metabolic syndrome in prepubertal children. Arch Endocrinol Metab. 2017 Jan-Feb;61(1):7-13. doi:10.1590/2359-3997000000199.

Gajewski M, Gajewska J, Rzodkiewicz P, Wojtecka-Łukasik E. Influence of exogenous leptin on redox homeostasis in neutrophils and lymphocytes cultured in synovial fluid isolated from patients with rheumatoid arthritis. Reumatologia. 2016;54(3):103-107. doi:10.5114/reum.2016.61209.

Gajewski M, Rzodkiewicz P, Gajewska J, Wojtecka-Łukasik E. The effect of leptin on the respiratory burst of human neutrophils cultured in synovial fluid. Reumatologia. 2015;53(1):21-25. doi:10.5114/reum.2015.50553.

Cui H, López M, Rahmouni K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat Rev Endocrinol. 2017 Jun;13(6):338-351. doi:10.1038/nrendo.2016.222.

Pérez-Pérez A, Vilariño-García T, Fernández-Riejos P, Martín-González J, Segura-Egea JJ, Sánchez-Margalet V. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev. 2017 Jun;35:71-84. doi:10.1016/j.cytogfr.2017.03.001.

Williams RL, Wood LG, Collins CE, Morgan PJ, Callister R. Energy homeostasis and appetite regulating hormones as predictors of weight loss in men and women. Appetite. 2016 Jun 1;101:1-7. doi:10.1016/j.appet.2016.02.153.

Lana A, Valdés-Bécares A, Buño A, Rodríguez-Artalejo F, Lopez-Garcia E. Serum Leptin Concentration is Associated with Incident Frailty in Older Adults. Aging Dis. 2017 Apr 1;8(2):240-249. doi:10.14336/AD.2016.0819.

Morioka T, Mori K, Motoyama K, Emoto M. Ectopic fat accumulation and glucose homeostasis: role of leptin in glucose and lipid metabolism and mass maintenance in skeletal muscle. In: Inaba M, editor. Musculoskeletal disease associated with diabetes mellitus. Tokyo: Springer; 2016. doi:10.1007/978-4-431-55720-3_14. 201-213 pp.

Paz-Filho G, Mastronardi CA, Licinio J. Leptin treatment: facts and expectations. Metabolism. 2015 Jan;64(1):146-156. doi:10.1016/j.metabol.2014.07.014.

Crujeiras AB, Carreira MC, Cabia B, Andrade S, Amil M, Casanueva FF. Leptin resistance in obesity: An epigenetic landscape. Life Sci. 2015 Nov 1;140:57-63. doi:10.1016/j.lfs.2015.05.003.

Kilpeläinen TO, Carli JF, Skowronski AA, et al. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels. Nat Commun. 2016 Feb 1;7:10494. doi:10.1038/ncomms10494.

Philbrick KA, Wong CP, Branscum AJ, Turner RT, Iwaniec UT. Leptin stimulates bone formation in ob/ob mice at doses having minimal impact on energy metabolism. J Endocrinol. 2017 Mar;232(3):461-474. doi:10.1530/JOE-16-0484.

Wabitsch M, Funcke JB, Lennerz B, et al. Biologically inactive leptin and early-onset extreme obesity. N Engl J Med. 2015 Jan 1;372(1):48-54. doi:10.1056/NEJMoa1406653.

Zhang Y, Ren J. Leptin and Obesity. In: Ahmad S, Imam S, editors. Obesity. Cham: Springer; 2016. doi:10.1007/978-3-319-19821-7_4. 45-58 pp.

Gonzalez-Carter D, Goode AE, Fiammengo R, Dunlop IE, Dexter DT, Porter AE. Inhibition of Leptin-ObR Interaction Does not Prevent Leptin Translocation Across a Human Blood-Brain Barrier Model. J Neuroendocrinol. 2016 Jun;28(6). doi:10.1111/jne.12392.

Rehman Khan A, Awan FR. Leptin Resistance: A Possible Interface Between Obesity and Pulmonary-Related Disorders. Int J Endocrinol Metab. 2016 Feb 12;14(1):e32586. doi:10.5812/ijem.32586.

Schaab M, Kratzsch J. The soluble leptin receptor. Best Pract Res Clin Endocrinol Metab. 2015 Oct;29(5):661-670. doi:10.1016/j.beem.2015.08.002.

Rizk NM, Sharif E. Leptin as well as Free Leptin Receptor Is Associated with Polycystic Ovary Syndrome in Young Women. Int J Endocrinol. 2015;2015:927805. doi:10.1155/2015/927805.

Jacquier M, Soula HA, Crauste F. A mathematical model of leptin resistance. Math Biosci. 2015 Sep;267:10-23. doi:10.1016/j.mbs.2015.06.008.

Published

2021-06-22

Issue

Section

Clinical Pediatrics