Bacterial surfactants as agents with antibiofilm activity

Authors

DOI:

https://doi.org/10.22141/2224-0551.16.1.2021.226463

Keywords:

bacterial biofilms, dispersion, biosurfagents

Abstract

Biosuragents are a heterogeneous group of biological surface-active amphiphilic compounds. The producers of biosurfactants are various microorganisms: bacteria and fungi. The class of biosurfactants consists of two groups: low molecular weight and high molecular weight compounds. Representatives of low molecular weight compounds are lipopeptides, glycolipids, fatty acids, phospholipids that reduce surface and interfacial tension, and high molecular weight compounds are polymer and dispersed biosurfactants, which are emulsion stabilizers. The most studied biosurfactants with the potential of drugs are lipopeptides and glycolipids. A subgroup of lipopeptides are polymyxins, pseudo-factins, putisolvins, surfactin, fengycin and others; and glycoli­pids — rhamnolipids, trehalose, sophorose, cellobiose, mannosileritritol lipids, and others. Biosurfactants play a key role in the life of biofilms: they regulate the adhesion of bacteria and biofilm matrix, support the functioning of the matrix channels, providing the nutrient needs of bacteria. It has also been shown that biosurfactants are involved in the formation and dispersion of formed biofilms. These substances, directly reacting with the components of the matrix, induce degradation of the biofilm. Biosurfing agents, possessing antimicrobial, antifungal and antiviral, and antitumor properties, are a promising class of compounds that, possessing a combination of antibacterial and antibiofilm action, open up new perspectives in the treatment of recurrent chronic infectious di­seases. It is believed that surface-active compounds, both representatives of lipopeptides and glycolipids, can be the molecular basis for the development of drugs that will enhance the effectiveness of antibiotic therapy for problem infections, especially those caused by antibiotic-resistant strains.

References

Abdel-Mawgoud AM, Lépine F, Déziel E. Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol. 2010 May;86(5):1323-36. doi:10.1007/s00253-010-2498-2.

Balleza D, Alessandrini A, Beltrán García MJ. Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides. J Membr Biol. 2019 Jun;252(2-3):131-157. doi:10.1007/s00232-019-00067-4.

Banat IM, De Rienzo MA, Quinn GA. Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol. 2014 Dec;98(24):9915-29. doi:10.1007/s00253-014-6169-6.

Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol. 2010 Jun;87(2):427-44. doi:10.1007/s00253-010-2589-0.

Berditsch M, Jäger T, Strempel N, Schwartz T, Overhage J, Ulrich AS. Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2015 Sep;59(9):5288-96. doi:10.1128/AAC.00682-15.

Bhattacharjee A, Nusca TD, Hochbaum AI. Rhamnolipids Mediate an Interspecies Biofilm Dispersal Signaling Pathway. ACS Chem Biol. 2016 Nov 18;11(11):3068-3076. doi:10.1021/acschembio.6b00750.

Biniarz P, Coutte F, Gancel F, Łukaszewicz M. High-throughput optimization of medium components and culture conditions for the efficient production of a lipopeptide pseudofactin by Pseudomonas fluorescens BD5. Microb Cell Fact. 2018 Aug 4;17(1):121. doi:10.1186/s12934-018-0968-x.

Bionda N, Fleeman RM, de la Fuente-Núñez C, et al. Identification of novel cyclic lipopeptides from a positional scanning combinatorial library with enhanced antibacterial and antibiofilm activities. Eur J Med Chem. 2016 Jan 27;108:354-363. doi:10.1016/j.ejmech.2015.11.032.

Brasseur R, Braun N, El Kirat K, Deleu M, Mingeot-Leclercq MP, Dufrêne YF. The biologically important surfactin lipopeptide induces nanoripples in supported lipid bilayers. Langmuir. 2007 Sep 11;23(19):9769-72. doi:10.1021/la7014868.

Ceresa C, Tessarolo F, Maniglio D, et al. Medical-Grade Silicone Coated with Rhamnolipid R89 Is Effective against Staphylococcus spp. Biofilms. Molecules. 2019 Oct 25;24(21):3843. doi:10.3390/molecules24213843.

Díaz De Rienzo MA, Banat IM, Dolman B, Winterburn J, Martin PJ. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. N Biotechnol. 2015 Dec 25;32(6):720-6. doi:10.1016/j.nbt.2015.02.009.

Diaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel. Appl Microbiol Biotechnol. 2016 Jul;100(13):5773-9. doi:10.1007/s00253-016-7310-5.

Ezadi F, Ardebili A, Mirnejad R. Antimicrobial Susceptibility Testing for Polymyxins: Challenges, Issues, and Recommendations. J Clin Microbiol. 2019 Mar 28;57(4):e01390-18. doi:10.1128/JCM.01390-18.

Fariq A, Saeed A. Production and Biomedical Applications of Probiotic Biosurfactants. Curr Microbiol. 2016 Apr;72(4):489-95. doi:10.1007/s00284-015-0978-4.

Fenibo EO, Ijoma GN, Selvarajan R, Chikere CB. Microbial Surfactants: The Next Generation Multifunctional Biomolecules for Applications in the Petroleum Industry and Its Associated Environmental Remediation. Microorganisms. 2019 Nov 19;7(11):581. doi:10.3390/microorganisms7110581.

Fernández-Barat L, Ciofu O, Kragh KN, et al. Phenotypic shift in Pseudomonas aeruginosa populations from cystic fibrosis lungs after 2-week antipseudomonal treatment. J Cyst Fibros. 2017 Mar;16(2):222-229. doi:10.1016/j.jcf.2016.08.005.

Gudiña EJ, Rangarajan V, Sen R, Rodrigues LR. Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci. 2013 Dec;34(12):667-75. doi:10.1016/j.tips.2013.10.002.

Hajfarajollah H, Eslami P, Mokhtarani B, Akbari Noghabi K. Biosurfactants from probiotic bacteria: A review. Biotechnol Appl Biochem. 2018 Nov;65(6):768-783. doi:10.1002/bab.1686.

Hanif A, Zhang F, Li P, et al. Fengycin Produced by Bacillus amyloliquefaciens FZB42 Inhibits Fusarium graminearum Growth and Mycotoxins Biosynthesis. Toxins (Basel). 2019 May 24;11(5):295. doi:10.3390/toxins11050295.

He J, Ledesma KR, Lam WY, et al. Variability of polymyxin B major components in commercial formulations. Int J Antimicrob Agents. 2010 Mar;35(3):308-10. doi:10.1016/j.ijantimicag.2009.11.005.

Inès M, Dhouha G. Glycolipid biosurfactants: Potential related biomedical and biotechnological applications. Carbohydr Res. 2015 Oct 30;416:59-69. doi:10.1016/j.carres.2015.07.016.

Inès M, Dhouha G. Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides. 2015 Sep;71:100-12. doi:10.1016/j.peptides.2015.07.006.

Irie Y, O'toole GA, Yuk MH. Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol Lett. 2005 Sep 15;250(2):237-43. doi:10.1016/j.femsle.2005.07.012.

Janek T, Łukaszewicz M, Krasowska A. Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol. 2012 Feb 23;12:24. doi:10.1186/1471-2180-12-24.

Janek T, Łukaszewicz M, Rezanka T, Krasowska A. Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour Technol. 2010 Aug;101(15):6118-23. doi:10.1016/j.biortech.2010.02.109.

Jezierska S, Claus S, Van Bogaert I. Yeast glycolipid biosurfactants. FEBS Lett. 2018 Apr;592(8):1312-1329. doi:10.1002/1873-3468.12888.

Klinger-Strobel M, Stein C, Forstner C, Makarewicz O, Pletz MW. Effects of colistin on biofilm matrices of Escherichia coli and Staphylococcus aureus. Int J Antimicrob Agents. 2017 Apr;49(4):472-479. doi:10.1016/j.ijantimicag.2017.01.005.

Kolpen M, Appeldorff CF, Brandt S, et al. Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions. Pathog Dis. 2016 Feb;74(1):ftv086. doi:10.1093/femspd/ftv086.

Krasowska A, Lukaszewicz M, Grzywacz D, Kamysz W. A novel method of pseudofactin synthesis. Patent EP3000822A1. Offitial J Eur Patent Office. 2016 Mar 30.

Kulakovskaya E, Kulakovskaya T. Chapter 1 - Structure and Occurrence of Yeast Extracellular Glycolipids. In: Kulakovskaya E, Kulakovskaya T, eds. Extracellular Glycolipids of Yeasts. Academic Press; 2014. pp 1-13. doi: 10.1016/B978-0-12-420069-2.00001-7.

Lora-Tamayo J, Murillo O, Ariza J. Clinical Use of Colistin in Biofilm-Associated Infections. Adv Exp Med Biol. 2019;1145:181-195. doi:10.1007/978-3-030-16373-0_13.

Malinowski AM, McClarty BM, Robinson C, Spear W, Sanchez M, Sparkes TC, Brooke JS. Polysorbate 80 and polymyxin B inhibit Stenotrophomonas maltophilia biofilm. Diagn Microbiol Infect Dis. 2017 Feb;87(2):154-156. doi:10.1016/j.diagmicrobio.2016.11.008.

Michalopoulos A, Falagas ME. Colistin and polymyxin B in critical care. Crit Care Clin. 2008 Apr;24(2):377-91, x. doi:10.1016/j.ccc.2007.12.003.

Mnif I, Ghribi D. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J Sci Food Agric. 2016 Oct;96(13):4310-20. doi:10.1002/jsfa.7759.

Mongkolthanaruk W. Classification of Bacillus beneficial substances related to plants, humans and animals. J Microbiol Biotechnol. 2012 Dec;22(12):1597-604. doi:10.4014/jmb.1204.04013.

Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front Cell Infect Microbiol. 2017 Feb 15;7:39. doi:10.3389/fcimb.2017.00039.

Ongena M, Jourdan E, Adam A, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol. 2007 Apr;9(4):1084-90. doi:10.1111/j.1462-2920.2006.01202.x.

Oppenheimer-Shaanan Y, Steinberg N, Kolodkin-Gal I. Small molecules are natural triggers for the disassembly of biofilms. Trends Microbiol. 2013 Nov;21(11):594-601. doi:10.1016/j.tim.2013.08.005.

Otzen DE. Biosurfactants and surfactants interacting with membranes and proteins: Same but different? Biochim Biophys Acta Biomembr. 2017 Apr;1859(4):639-649. doi:10.1016/j.bbamem.2016.09.024.

Poirel L, Jayol A, Nordmann P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin Microbiol Rev. 2017 Apr;30(2):557-596. doi:10.1128/CMR.00064-16.

Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev. 2010 Nov;34(6):1037-62. doi:10.1111/j.1574-6976.2010.00221.x.

Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol. 2009 Jun;83(3):541-53. doi:10.1007/s00253-009-1987-7.

Ron EZ, Rosenberg E. Natural roles of biosurfactants. Environ Microbiol. 2001 Apr;3(4):229-36. doi:10.1046/j.1462-2920.2001.00190.x.

Roy A, Mahata D, Paul D, Korpole S, Franco OL, Mandal SM. Purification, biochemical characterization and self-assembled structure of a fengycin-like antifungal peptide from Bacillus thuringiensis strain SM1. Front Microbiol. 2013 Nov 21;4:332. doi:10.3389/fmicb.2013.00332.

Salman M, Rizwana R, Khan H, et al. Synergistic effect of silver nanoparticles and polymyxin B against biofilm produced by Pseudomonas aeruginosa isolates of pus samples in vitro. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):2465-2472. doi:10.1080/21691401.2019.1626864.

Santos DK, Rufino RD, Luna JM, Santos VA, Sarubbo LA. Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int J Mol Sci. 2016 Mar 18;17(3):401. doi:10.3390/ijms17030401.

Satputea SK, Banpurkar AG, Banat IM, Sangshetti JN, Patil RH, Gade WN. Multiple Roles of Biosurfactants in Biofilms. Curr Pharm Des. 2016;22(11):1429-48. doi:10.2174/1381612822666160120152704.

Schneider-Futschik EK, Paulin OKA, Hoyer D, et al. Sputum Active Polymyxin Lipopeptides: Activity against Cystic Fibrosis Pseudomonas aeruginosa Isolates and Their Interactions with Sputum Biomolecules. ACS Infect Dis. 2018 May 11;4(5):646-655. doi:10.1021/acsinfecdis.7b00238.

Vanittanakom N, Loeffler W, Koch U, Jung G. Fengycin--a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot (Tokyo). 1986 Jul;39(7):888-901. doi:10.7164/antibiotics.39.888.

Vollenbroich D, Ozel M, Vater J, Kamp RM, Pauli G. Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals. 1997 Sep;25(3):289-97. doi:10.1006/biol.1997.0099.

Vuotto C, Donelli G. Novel Treatment Strategies for Biofilm-Based Infections. Drugs. 2019 Oct;79(15):1635-1655. doi:10.1007/s40265-019-01184-z.

Wang J, Yu B, Tian D, Ni M. Rhamnolipid but not motility is associated with the initiation of biofilm seeding dispersal of Pseudomonas aeruginosa strain PA17. J Biosci. 2013 Mar;38(1):149-56. doi:10.1007/s12038-012-9297-0.

Wood TL, Gong T, Zhu L, et al. Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria. NPJ Biofilms Microbiomes. 2018 Oct 3;4:22. doi:10.1038/s41522-018-0066-1.

Ye L, Hildebrand F, Dingemans J, et al. Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp. pathogens. PLoS One. 2014 Nov 4;9(11):e110038. doi:10.1371/journal.pone.0110038.

Zemenová J, Sýkora D, Maletínská L, Kuneš J. Lipopeptides as therapeutics: applications and in vivo quantitative analysis. Bioanalysis. 2017 Jan;9(2):215-230. doi:10.4155/bio-2016-0206.

Zhao H, Shao D, Jiang C, et al. Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol. 2017 Aug;101(15):5951-5960. doi:10.1007/s00253-017-8396-0.

Zheng H, Singh N, Shetye GS, Jin Y, Li D, Luk YY. Synthetic analogs of rhamnolipids modulate structured biofilms formed by rhamnolipid-nonproducing mutant of Pseudomonas aeruginosa. Bioorg Med Chem. 2017 Mar 15;25(6):1830-1838. doi:10.1016/j.bmc.2017.01.042.

Published

2021-04-06

Issue

Section

Theoretical Medicine