The world of microRNAs of the hepatobiliary system

Authors

DOI:

https://doi.org/10.22141/2224-0551.16.1.2021.226462

Keywords:

genome, microRNA, detection methods, hepatobiliary system, review

Abstract

The scientific review presents the significance of the world of microRNAs of the hepatobiliary system. For writing the article, information was searched using Scopus, Web of Science, MedLine, PubMed, Google Scholar, EMBASE, Global Health, The Cochrane Library, CyberLeninka databases. It is emphasized that microRNAs in cells play an important role in regulating the activity of gene expression and control numerous physiological processes, such as metabolism, proliferation, differentiation, apoptosis of cells. The association of some diseases with changes in the content of microRNAs in the peripheral bloodstream is shown. The article presents a brief description of the group of non-coding RNAs. The characteristic of the basic microRNA databases with display of electronic addresses is given. Both traditional methods based on amplification technology and new detection methods (next-generation sequencing, electrochemical detection based on enzyme signal amplification, identification by ligation and application of gold nanoparticles) are used to determine microRNAs. The authors compare different methods of microRNA detection. It is noted that overexpression or inhibition of the generation of specific microRNAs is accompanied by impaired liver function and the development of diseases of the hepatobiliary system. Changes in some microRNAs in serum or liver tissue have been shown to be highly diagnostic markers of some liver diseases. Thus, the identification of changes in the level of representativeness of certain microRNAs may have valuable diagnostic information to the practitioner, and the impact on the processes of formation and maturation of microRNAs by drugs is a new direction in the treatment of a wide range of diseases. The modern idea of the diagnostic value of microRNAs in di­seases of the biliary tract in children and the possibilities of drug management of the activity of the process of their generation are of particular interest.

References

Abaturov OE, Babych VL. The role of microRNA in diseases of the biliary system. Zdorov`e rebenka. 2017;12(7):155-161. doi:10.22141/2224-0551.12.7.2017.116191. (in Ukrainian).

Fedyanin MYu, Ignatova EO, Tyulyandin SA. The role of microRNAs in solid tumors. Zlokačestvennye opuholi. 2013;(1):3-14. (in Russian).

Ambros V. The functions of animal microRNAs. Nature. 2004 Sep 16;431(7006):350-355. doi:10.1038/nature02871.

Backes C, Meder B, Hart M, et al. Prioritizing and selecting likely novel miRNAs from NGS data. Nucleic Acids Res. 2016 Apr 7;44(6):e53. doi:10.1093/nar/gkv1335.

Bartel DP. Metazoan MicroRNAs. Cell. 2018 Mar 22;173(1):20-51. doi:10.1016/j.cell.2018.03.006.

Bertoli G, Cava C, Castiglioni I. MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer. Theranostics. 2015 Jul 13;5(10):1122-1143. doi:10.7150/thno.11543.

Budak H, Bulut R, Kantar M, Alptekin B. MicroRNA nomenclature and the need for a revised naming prescription. Brief Funct Genomics. 2016 Jan;15(1):65-71. doi:10.1093/bfgp/elv026.

Cammaerts S, Strazisar M, De Rijk P, Del Favero J. Genetic variants in microRNA genes: impact on microRNA expression, function, and disease. Front Genet. 2015 May 21;6:186. doi:10.3389/fgene.2015.00186.

Cao B, Zhou X, Ma J, et al. Role of MiRNAs in Inflammatory Bowel Disease. Dig Dis Sci. 2017 Jun;62(6):1426-1438. doi:10.1007/s10620-017-4567-1.

Cao Y, Fanning S, Proos S, Jordan K, Srikumar S. A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies. Front Microbiol. 2017 Sep 21;8:1829. doi:10.3389/fmicb.2017.01829.

Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014 Mar 27;157(1):77-94. doi:10.1016/j.cell.2014.03.008.

Chen J, Hu C, Pan P. Extracellular Vesicle MicroRNA Transfer in Lung Diseases. Front Physiol. 2017 Dec 12;8:1028. doi:10.3389/fphys.2017.01028.

Crawford NP. Deciphering the Dark Matter of Complex Genetic Inheritance. Cell Syst. 2016 Mar 23;2(3):144-146. doi:10.1016/j.cels.2016.03.003.

Delihas N. Discovery and characterization of the first non-coding RNA that regulates gene expression, micF RNA: A historical perspective. World J Biol Chem. 2015 Nov 26;6(4):272-280. doi:10.4331/wjbc.v6.i4.272.

Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015 Aug;12(8):697. doi:10.1038/nmeth.3485.

ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep 6;489(7414):57-74. doi:10.1038/nature11247.

Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008 Feb;9(2):102-14. doi:10.1038/nrg2290.

Finch ML, Marquardt JU, Yeoh GC, Callus BA. Regulation of microRNAs and their role in liver development, regeneration and disease. Int J Biochem Cell Biol. 2014 Sep;54:288-303. doi:10.1016/j.biocel.2014.04.002.

Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr. 2017 Sep 25;12:23. doi:10.1186/s12263-017-0577-z.

Ichii O, Horino T. MicroRNAs associated with the development of kidney diseases in humans and animals. J Toxicol Pathol. 2018 Jan;31(1):23-34. doi:10.1293/tox.2017-0051.

Jeon TI, Osborne TF. miRNA and cholesterol homeostasis. Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):2041-2046. doi:10.1016/j.bbalip.2016.01.005.

Lee R, Feinbaum R, Ambros V. A short history of a short RNA. Cell. 2004 Jan 23;116(2 Suppl):S89-92, 1 p following S96. doi:10.1016/s0092-8674(04)00035-2.

Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993 Dec 3;75(5):843-854. doi:10.1016/0092-8674(93)90529-y.

Letelier P, Riquelme I, Hernández AH, Guzmán N, Farías JG, Roa JC. Circulating MicroRNAs as Biomarkers in Biliary Tract Cancers. Int J Mol Sci. 2016 May 23;17(5):791. doi:10.3390/ijms17050791.

Liu K, Tong H, Li T, Wang X, Chen Y. Research progress in molecular biology related quantitative methods of MicroRNA. Am J Transl Res. 2020 Jul 15;12(7):3198-3211.

Londin E, Loher P, Telonis AG, et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):E1106-1115. doi:10.1073/pnas.1420955112.

Marian AJ, van Rooij E, Roberts R. Genetics and Genomics of Single-Gene Cardiovascular Diseases: Common Hereditary Cardiomyopathies as Prototypes of Single-Gene Disorders. J Am Coll Cardiol. 2016 Dec 27;68(25):2831-2849. doi:10.1016/j.jacc.2016.09.968.

McCall MN, Kim MS, Adil M, et al. Toward the human cellular microRNAome. Genome Res. 2017 Oct;27(10):1769-1781. doi:10.1101/gr.222067.117.

McGeary SE, Lin KS, Shi CY, et al. The biochemical basis of microRNA targeting efficacy. Science. 2019 Dec 20;366(6472):eaav1741. doi:10.1126/science.aav1741.

Mellis D, Caporali A. MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem Soc Trans. 2018 Feb 19;46(1):11-21. doi:10.1042/BST20170037.

Meyts I, Bosch B, Bolze A, et al. Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol. 2016 Oct;138(4):957-969. doi:10.1016/j.jaci.2016.08.003.

Minatel BC, Martinez VD, Ng KW, et al. Large-scale discovery of previously undetected microRNAs specific to human liver. Hum Genomics. 2018 Mar 27;12(1):16. doi:10.1186/s40246-018-0148-4.

Mingardi J, Musazzi L, De Petro G, Barbon A. miRNA Editing: New Insights into the Fast Control of Gene Expression in Health and Disease. Mol Neurobiol. 2018 Oct;55(10):7717-7727. doi:10.1007/s12035-018-0951-x.

Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10513-10518. doi:10.1073/pnas.0804549105.

Panzeri I, Rossetti G, Abrignani S, Pagani M. Long Intergenic Non-Coding RNAs: Novel Drivers of Human Lymphocyte Differentiation. Front Immunol. 2015 Apr 15;6:175. doi:10.3389/fimmu.2015.00175.

Papanagnou P, Stivarou T, Tsironi M. The Role of miRNAs in Common Inflammatory Arthropathies: Osteoarthritis and Gouty Arthritis. Biomolecules. 2016 Nov 11;6(4):44. doi:10.3390/biom6040044.

Picard C, Fischer A. Contribution of high-throughput DNA sequencing to the study of primary immunodeficiencies. Eur J Immunol. 2014 Oct;44(10):2854-2861. doi:10.1002/eji.201444669.

Piriyapongsa J, Bootchai C, Ngamphiw C, Tongsima S. microPIR2: a comprehensive database for human-mouse comparative study of microRNA-promoter interactions. Database (Oxford). 2014 Nov 25;2014:bau115. doi:10.1093/database/bau115.

Ramassone A, Pagotto S, Veronese A, Visone R. Epigenetics and MicroRNAs in Cancer. Int J Mol Sci. 2018 Feb 3;19(2):459. doi:10.3390/ijms19020459.

Seleman M, Hoyos-Bachiloglu R, Geha RS, Chou J. Uses of Next-Generation Sequencing Technologies for the Diagnosis of Primary Immunodeficiencies. Front Immunol. 2017 Jul 24;8:847. doi:10.3389/fimmu.2017.00847.

Siggens L, Ekwall K. Epigenetics, chromatin and genome organization: recent advances from the ENCODE project. J Intern Med. 2014 Sep;276(3):201-214. doi:10.1111/joim.12231.

Signal B, Gloss BS, Dinger ME. Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs. Trends Genet. 2016 Oct;32(10):620-637. doi:10.1016/j.tig.2016.08.004.

Takata A, Otsuka M, Yoshikawa T, Kishikawa T, Ohno M, Koike K. MicroRNAs and liver function. Minerva Gastroenterol Dietol. 2013 Jun;59(2):187-203.

Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011 Sep 1;39(16):7223-7233. doi:10.1093/nar/gkr254.

Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. Int J Genomics. 2014;2014:970607. doi:10.1155/2014/970607.

Wang X, He Y, Mackowiak B, Gao B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut. 2020 Oct 30:gutjnl-2020-322526. doi:10.1136/gutjnl-2020-322526.

Wang Y, Xu D, Wang B, Hou X. Could MicroRNAs be Regulators of Gout Pathogenesis? Cell Physiol Biochem. 2015;36(6):2085-2092. doi:10.1159/000430176.

Wasik U, Kempinska-Podhorodecka A, Bogdanos DP, Milkiewicz P, Milkiewicz M. Enhanced expression of miR-21 and miR-150 is a feature of anti-mitochondrial antibody-negative primary biliary cholangitis. Mol Med. 2020 Jan 16;26(1):8. doi:10.1186/s10020-019-0130-1.

Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010 Nov;56(11):1733-1741. doi:10.1373/clinchem.2010.147405.

Willeit P, Skroblin P, Kiechl S, Fernández-Hernando C, Mayr M. Liver microRNAs: potential mediators and biomarkers for metabolic and cardiovascular disease? Eur Heart J. 2016 Nov 14;37(43):3260-3266. doi:10.1093/eurheartj/ehw146.

Yin X, Chai Z, Sun X, et al. Overexpression of microRNA-96 is associated with poor prognosis and promotes proliferation, migration and invasion in cholangiocarcinoma cells via MTSS1. Exp Ther Med. 2020 Apr;19(4):2757-2765. doi:10.3892/etm.2020.8502.

Zhang T, Yang Z, Kusumanchi P, Han S, Liangpunsakul S. Critical Role of microRNA-21 in the Pathogenesis of Liver Diseases. Front Med (Lausanne). 2020 Jan 31;7:7. doi:10.3389/fmed.2020.00007.

Published

2021-04-06

Issue

Section

Review of Literature