Postbiotics and their potential usage in the diet of young children

S.L. Nyankovskyy, О.S. Nyankovska, M.S. Yatsula, M.I. Horodylovska


The term “biotics” refers to nutritional strategies that can be utilized to direct the gut microbiota towards a more favorable state for host health. The term “biotic” is derived from the Greek word biōtikós, meaning “pertaining to life”, and refers to the biological ecosystem made up of living organisms together with their physical environment. Prebiotics, probiotics and synbiotics can modulate the gut microbiota composition and its activity, and also have direct effects on the immune response. The newest member of the biotics family, postbiotics, are bioactive compounds produced by food-grade microorganisms during a fermentation process. Postbiotics include microbial cells, cell constituents and various metabolites. The effectiveness of postbiotics is based on microbial metabolites — proteins, lipids, carbohydrates, vitamins, organic acids, cell wall components or other complex molecules formed from the fermented matrix. Postbiotics have local and systemic effects. Local effects of postbiotics are immunomodulatory, anti-inflammatory, antimicrobial, intestinal barrier formation, effects on the microbiota composition and activity, systemic — antioxidant, antihypertensive, hypocholesterolemic, antiproliferative, anti-obesogenic. The results of gut microbiota research will help develop individual recommendations in terms of personalized nutrition or interventions to improve health. Postbiotics might be a safer alternative to probiotics in immunocompromised or severely ill children.


microbiota; postbiotics; children; fermented infant formula


Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535(7610):75‐84. doi:10.1038/nature18848.

Fischbach MA, Segre JA. Signaling in Host-Associated Microbial Communities. Cell. 2016;164(6):1288‐1300. doi:10.1016/j.cell.2016.02.037.

Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220‐230. doi:10.1038/nature11550.

Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15(10):630‐638. doi:10.1038/nrmicro.2017.58.

Skelly AN, Sato Y, Kearney S, Honda K. Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol. 2019;19(5):305‐323. doi:10.1038/s41577-019-0144-5.

Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16(1):35‐56. doi:10.1038/s41575-018-0061-2.

Biotic. Available from:

Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int J Mol Sci. 2019;20(19):4673. doi:10.3390/ijms20194673.

Food and Agriculture Organization of the United Nations; World Health Organization. Probiotics in food: health and nutritional properties and guidelines for evaluation. Rome: Food and Agriculture Organization of the United Nations: World Health Organization; 2006. 50p.

Food and Agriculture Organization of the United Nations; World Health Organization. Guidelines for the Evaluation of Probiotics in Food. London Ontario, Canada: Food and Agriculture Organization of the United Nations: World Health Organization; 2002. Available from:

O'Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol. 2017;2:17057. doi:10.1038/nmicrobiol.2017.57.

Collado MC, Isolauri E, Salminen S, Sanz Y. The impact of probiotic on gut health. Curr Drug Metab. 2009;10(1):68‐78. doi:10.2174/138920009787048437.

Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol. 2013;6(1):39‐51. doi:10.1177/1756283X12459294.

Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A. Probiotic mechanisms of action. Ann Nutr Metab. 2012;61(2):160‐174. doi:10.1159/000342079.

Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16(10):605‐616. doi:10.1038/s41575-019-0173-3.

Hotel ACP, Cordoba A, Hotel A, et al. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention. 2001;5:1-10.

Thomas DW, Greer FR; American Academy of Pediatrics Committee on Nutrition; American Academy of Pediatrics Section on Gastroenterology, Hepatology, and Nutrition. Probiotics and prebiotics in pediatrics. Pediatrics. 2010;126(6):1217‐1231. doi:10.1542/peds.2010-2548.

Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491‐502. doi:10.1038/nrgastro.2017.75.

Vyas U, Ranganathan N. Probiotics, prebiotics, and synbiotics: gut and beyond. Gastroenterol Res Pract. 2012;2012:872716. doi:10.1155/2012/872716.

Dobryanskyy DO. Oligosaccharides In Human Milk And In Milk Formulas For Preterm Infants – Value For Preterm Infants. Neonatol hìr perinat med. 2019;9(1):67-77. doi:10.24061/2413-4260.IX.1.31.2019.11. (in Ukrainian).

Giovannini M, Verduci E, Gregori D, et al. Prebiotic effect of an infant formula supplemented with galacto-oligosaccharides: randomized multicenter trial. J Am Coll Nutr. 2014;33(5):385‐393. doi:10.1080/07315724.2013.878232.

Vandenplas Y, Zakharova I, Dmitrieva Y. Oligosaccharides in infant formula: more evidence to validate the role of prebiotics. Br J Nutr. 2015;113(9):1339‐1344. doi:10.1017/S0007114515000823.

Sierra C, Bernal MJ, Blasco J, et al. Prebiotic effect during the first year of life in healthy infants fed formula containing GOS as the only prebiotic: a multicentre, randomised, double-blind and placebo-controlled trial. Eur J Nutr. 2015;54(1):89‐99. doi:10.1007/s00394-014-0689-9.

Wegh CAM, Schoterman MHC, Vaughan EE, Belzer C, Benninga MA. The effect of fiber and prebiotics on children's gastrointestinal disorders and microbiome. Expert Rev Gastroenterol Hepatol. 2017;11(11):1031‐1045. doi:10.1080/17474124.2017.1359539.

Bertelsen RJ, Jensen ET, Ringel-Kulka T. Use of probiotics and prebiotics in infant feeding. Best Pract Res Clin Gastroenterol. 2016;30(1):39‐48. doi:10.1016/j.bpg.2016.01.001.

Macfarlane S, Macfarlane GT, Cummings JH. Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther. 2006;24(5):701‐714. doi:10.1111/j.1365-2036.2006.03042.x.

Arslanoglu S, Moro GE, Boehm G. Early supplementation of prebiotic oligosaccharides protects formula-fed infants against infections during the first 6 months of life. J Nutr. 2007;137(11):2420‐2424. doi:10.1093/jn/137.11.2420.

Roberfroid M, Gibson GR, Hoyles L, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104 Suppl 2:S1‐S63. doi:10.1017/S0007114510003363.

Gurry T. Synbiotic approaches to human health and well-being. Microb Biotechnol. 2017;10(5):1070‐1073. doi:10.1111/1751-7915.12789.

Burks AW, Harthoorn LF, Van Ampting MT, et al. Synbiotics-supplemented amino acid-based formula supports adequate growth in cow's milk allergic infants. Pediatr Allergy Immunol. 2015;26(4):316‐322. doi:10.1111/pai.12390.

van der Aa LB, Heymans HS, van Aalderen WM, et al. Effect of a new synbiotic mixture on atopic dermatitis in infants: a randomized-controlled trial. Clin Exp Allergy. 2010;40(5):795‐804. doi:10.1111/j.1365-2222.2010.03465.x.

van der Aa LB, van Aalderen WM, Heymans HS, et al. Synbiotics prevent asthma-like symptoms in infants with atopic dermatitis. Allergy. 2011;66(2):170‐177. doi:10.1111/j.1398-9995.2010.02416.x.

Chua MC, Ben-Amor K, Lay C, et al. Effect of Synbiotic on the Gut Microbiota of Cesarean Delivered Infants: A Randomized, Double-blind, Multicenter Study. J Pediatr Gastroenterol Nutr. 2017;65(1):102‐106. doi:10.1097/MPG.0000000000001623.

Nikbakht E, Khalesi S, Singh I, Williams LT, West NP, Colson N. Effect of probiotics and synbiotics on blood glucose: a systematic review and meta-analysis of controlled trials. Eur J Nutr. 2018;57(1):95‐106. doi:10.1007/s00394-016-1300-3.

Miller LE, Ouwehand AC, Ibarra A. Effects of probiotic-containing products on stool frequency and intestinal transit in constipated adults: systematic review and meta-analysis of randomized controlled trials. Ann Gastroenterol. 2017;30(6):629‐639. doi:10.20524/aog.2017.0192.

Arumugam S, Lau CS, Chamberlain RS. Probiotics and Synbiotics Decrease Postoperative Sepsis in Elective Gastrointestinal Surgical Patients: a Meta-Analysis. J Gastrointest Surg. 2016;20(6):1123‐1131. doi:10.1007/s11605-016-3142-y.

Umu ÖCO, Rudi K, Diep DB. Modulation of the gut microbiota by prebiotic fibres and bacteriocins. Microb Ecol Health Dis. 2017;28(1):1348886. doi:10.1080/16512235.2017.1348886.

Collado MC, Isolauri E, Salminen S, Sanz Y. The impact of probiotic on gut health. Curr Drug Metab. 2009;10(1):68‐78. doi:10.2174/138920009787048437.

Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res. 2017;61(1):10.1002/mnfr.201600240. doi:10.1002/mnfr.201600240.

O'Grady J, O'Connor EM, Shanahan F. Review article: dietary fibre in the era of microbiome science. Aliment Pharmacol Ther. 2019;49(5):506‐515. doi:10.1111/apt.15129.

Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5(4):1417‐1435. doi:10.3390/nu5041417.

Markowiak P, Śliżewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. 2017;9(9):1021. doi:10.3390/nu9091021.

Konstantinov SR, Kuipers EJ, Peppelenbosch MP. Functional genomic analyses of the gut microbiota for CRC screening. Nat Rev Gastroenterol Hepatol. 2013;10(12):741‐745. doi:10.1038/nrgastro.2013.178.

Taverniti V, Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 2011;6(3):261‐274. doi:10.1007/s12263-011-0218-x.

Aguilar-Toalá JE, Garcia-Varela R, Garcia HS, et al. Postbiotics: An evolving term within the functional foods field. Trends Food Sci Technol. 2018;75:105-114. doi:10.1016/j.tifs.2018.03.009.

Agostoni C, Goulet O, Kolacek S, et al. Fermented infant formulae without live bacteria. J Pediatr Gastroenterol Nutr. 2007;44(3):392‐397. doi:10.1097/01.mpg.0000258887.93866.69.

Szajewska H, Skórka A, Pieścik-Lech M. Fermented infant formulas without live bacteria: a systematic review. Eur J Pediatr. 2015;174(11):1413‐1420. doi:10.1007/s00431-015-2629-y.

Ouwehand AC, Tölkkö S, Kulmala J, Salminen S, Salminen E. Adhesion of inactivated probiotic strains to intestinal mucus. Lett Appl Microbiol. 2000;31(1):82‐86. doi:10.1046/j.1472-765x.2000.00773.x.

Kataria J, Li N, Wynn JL, Neu J. Probiotic microbes: do they need to be alive to be beneficial?. Nutr Rev. 2009;67(9):546‐550. doi:10.1111/j.1753-4887.2009.00226.x.

Deshpande G, Athalye-Jape G, Patole S. Para-probiotics for Preterm Neonates-The Next Frontier. Nutrients. 2018;10(7):871. doi:10.3390/nu10070871.

Olle B. Medicines from microbiota. Nat Biotechnol. 2013;31(4):309‐315. doi:10.1038/nbt.2548.

Lahtinen SJ. Probiotic viability - does it matter?. Microb Ecol Health Dis. 2012;23:10.3402/mehd.v23i0.18567. doi:10.3402/mehd.v23i0.18567.

de Almada CN, Almada CN, Martinez RCR, Sant’Ana AS. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci Technol. 2016;58:96-114. doi:10.1016/j.tifs.2016.09.011.

Gosálbez L, Ramón D. Probiotics in transition: novel strategies. Trends Biotechnol. 2015;33(4):195‐196. doi:10.1016/j.tibtech.2015.01.006.

Wang Y, Xie J, Wang N, et al. Lactobacillus casei Zhang modulate cytokine and toll-like receptor expression and beneficially regulate poly I:C-induced immune responses in RAW264.7 macrophages. Microbiol Immunol. 2013;57(1):54‐62. doi:10.1111/j.1348-0421.516.x.

Kamiya T, Wang L, Forsythe P, et al. Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats. Gut. 2006;55(2):191‐196. doi:10.1136/gut.2005.070987.

Imaoka A, Shima T, Kato K, et al. Anti-inflammatory activity of probiotic Bifidobacterium: enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells. World J Gastroenterol. 2008;14(16):2511‐2516. doi:10.3748/wjg.14.2511.

Hoarau C, Lagaraine C, Martin L, Velge-Roussel F, Lebranchu Y. Supernatant of Bifidobacterium breve induces dendritic cell maturation, activation, and survival through a Toll-like receptor 2 pathway. J Allergy Clin Immunol. 2006;117(3):696‐702. doi:10.1016/j.jaci.2005.10.043.

Ménard S, Laharie D, Asensio C, et al. Bifidobacterium breve and Streptococcus thermophilus secretion products enhance T helper 1 immune response and intestinal barrier in mice. Exp Biol Med (Maywood). 2005;230(10):749‐756. doi:10.1177/153537020523001008.

Zagato E, Mileti E, Massimiliano L, et al. Lactobacillus paracasei CBA L74 metabolic products and fermented milk for infant formula have anti-inflammatory activity on dendritic cells in vitro and protective effects against colitis and an enteric pathogen in vivo. PLoS One. 2014;9(2):e87615. doi:10.1371/journal.pone.0087615.

Korcz E , Kerényi Z , Varga L . Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol-lowering effects. Food Funct. 2018;9(6):3057‐3068. doi:10.1039/c8fo00118a.

Ahmadi Badi S, Moshiri A, Fateh A, et al. Microbiota-Derived Extracellular Vesicles as New Systemic Regulators. Front Microbiol. 2017;8:1610. doi:10.3389/fmicb.2017.01610.

Ryan PM, Ross RP, Fitzgerald GF, Caplice NM, Stanton C. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food Funct. 2015;6(3):679‐693. doi:10.1039/c4fo00529e.

Salazar N, Gueimonde M, de Los Reyes-Gavilán CG, Ruas-Madiedo P. Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria as Fermentable Substrates by the Intestinal Microbiota. Crit Rev Food Sci Nutr. 2016;56(9):1440‐1453. doi:10.1080/10408398.2013.770728.

Zeidan AA, Poulsen VK, Janzen T, et al. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev. 2017;41(Supp_1):S168‐S200. doi:10.1093/femsre/fux017.

Das D, Baruah R, Goyal A. A food additive with prebiotic properties of an α-d-glucan from lactobacillus plantarum DM5. Int J Biol Macromol. 2014;69:20‐26. doi:10.1016/j.ijbiomac.2014.05.029.

Hongpattarakere T, Cherntong N, Wichienchot S Kolida S, Rastallc RA. In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohyd Polym. 2012;87(1):846-852. doi:10.1016/j.carbpol.2011.08.085.

Wang K, Li W, Rui X, Chen X, Jiang M, Dong M. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int J Biol Macromol. 2014;63:133‐139. doi:10.1016/j.ijbiomac.2013.10.036.

Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev. 2010;74(1):81‐94. doi:10.1128/MMBR.00031-09.

Chelakkot C, Choi Y, Kim DK, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med. 2018;50(2):e450. doi:10.1038/emm.2017.282.

Fábrega MJ, Aguilera L, Giménez R, et al. Activation of Immune and Defense Responses in the Intestinal Mucosa by Outer Membrane Vesicles of Commensal and Probiotic Escherichia coli Strains. Front Microbiol. 2016;7:705. doi:10.3389/fmicb.2016.00705.

Kang CS, Ban M, Choi EJ, et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS One. 2013;8(10):e76520. doi:10.1371/journal.pone.0076520.

Morisset M, Aubert-Jacquin C, Soulaines P, Moneret-Vautrin DA, Dupont C. A non-hydrolyzed, fermented milk formula reduces digestive and respiratory events in infants at high risk of allergy. Eur J Clin Nutr. 2011;65(2):175‐183. doi:10.1038/ejcn.2010.250.

Rodriguez-Herrera A, Ludwig T, Bouritius H, et al. A Partly Fermented Infant Formula Combined with Scgos/Lcfos Resulted in a Lower Incidence of Investigator-Reported Infantile Colic in Healthy Term-Born Infants. ID: 218/OP1: 4. In: 9th Excellence in Pediatrics Conference – 2017 Book of Abstracts. Cogent Medicine. 2017;4:1408251. doi:10.1080/2331205X.2017.1408251.

Rodriguez-Herrera A, Mulder K, Bouritius H, et al. Gastrointestinal Tolerance, Growth and Safety of a Partly Fermented Formula with Specific Prebiotics in Healthy Infants: A Double-Blind, Randomized, Controlled Trial. Nutrients. 2019;11(7):1530. doi:10.3390/nu11071530.

Vandenplas Y, Ludwig T, Bouritius H, et al. Randomised controlled trial demonstrates that fermented infant formula with short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides reduces the incidence of infantile colic. Acta Paediatr. 2017;106(7):1150‐1158. doi:10.1111/apa.13844.

Peng GC, Hsu CH. The efficacy and safety of heat-killed Lactobacillus paracasei for treatment of perennial allergic rhinitis induced by house-dust mite. Pediatr Allergy Immunol. 2005;16(5):433‐438. doi:10.1111/j.1399-3038.2005.00284.x.

Rampengan NH, Manoppo J, Warouw SM. Comparison of efficacies between live and killed probiotics in children with lactose malabsorption. Southeast Asian J Trop Med Public Health. 2010;41(2):474‐481.

Copyright (c) 2020 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта