Prediction of the uncontrolled course of autoimmune type 1 diabetes in children

A.E. Abaturov, A.A. Nikulina, L.L. Petrenko, V.A. Yenhovatova, S.V. Turova, I.М. Makogon


Background. Diabetes mellitus as a disease of civilization is one of the main causes of death in most developed countries. Purpose of the study: to determine the risk factors for the uncontrolled course of autoimmune type 1 diabetes in children. Materials and methods. To determine the type of a newly diagnosed diabetes, 100 children aged 1 to 18 years were examined by evaluating the levels of autoantibodies to glutamic acid decarboxylase, tyrosine phosphatase, zinc transporters using the enzyme immunoassay method (Euroimmun) and detecting genetic defects in b-cell function by polymerase chain reaction and Illumina sequencing technology. To predict the course of autoimmune type 1 diabetes with the help of Wald sequential analysis, 100 clinical, immunological, molecular genetic, instrumental diagnostic parameters were analyzed with relative risk and diagnostic coefficient determination after follow-up observation of 53 children with uncontrolled (main group, n = 22) and controlled course (control group, n = 31). Results. Autoimmune type 1 diabetes was diagnosed in 98 %, genetic defects in b-cell function (maturity-onset diabetes of the young type 5 and Wolfram syndrome type 1) — in 2 % of the examined children aged 1 to 18 years. Seventeen factors with sufficient informative prognostic significance (I ≥ 0.5), which are convenient for use in clinical practice, were identified as predictors for the development of an uncontrolled course of autoimmune type 1 diabetes in children: history of influenza one year before the onset of type 1 diabetes (I = 1.73), increased alanine aminotransferase level (I = 1.27), presence of antibodies to glutamic acid decarboxylase (I = 1.14), manifestation of type 1 diabetes at the age of 1–4 years or more than 6 years (I = 0.98), increased blood urea level (I = 0.86), macrosomia at birth (I = 0.71), an increase in glycated hemoglobin content of more than 8 % at the onset of the disease (I = 0.7), a decrease in alkaline phosphatase level (I = 0.66), heredity for autoimmune illnesses (I = 0.62), concomitant diseases of the cardiovascular system (I = 0.61), hyperglycemia of more than 23 mmol/l (I = 0.56), delayed hospitalization of a child for more than 1 month from the manifestation of type 1 diabetes (I = 0.54), lack of feeding regimen during the 1st year of life (I = 0.52), glucosuria (I = 0.52), history of recurrent acute respiratory infections (I = 0.52), hypoproteinemia (I = 0.51), the presence of chronic foci of infection (I = 0.5). Conclusions. To improve the quality of diagnosis, prediction of the course and personalized treatment of diabetes, especially in patients with a newly diagnosed disease, it is necessary to determine specific autoantibodies against the islet apparatus of the pancreas. In cases with a negative result, a further referral for molecular genetic testing is recommended in order to exclude non-autoimmune types of diabetes. With laboratory verified autoimmune type 1 diabetes, an easy-to-use mathematical model with high valid features is proposed to predict the further course of the disease in children.


autoimmune diabetes; children; prediction; predictors; Wald test


Abaturov AE, Nikulina AA. Association of single nucleotide polymorphisms of the loctase gene with insulin resistance in childdren. Modern medical technologies. 2016;(31):33–36. (in Ukrainian).

Abaturov AE, Nikulina AA, Logvinov DV, Kolbasin PA. Dietotherapy in children with obesity associated with adult lactase deficiency. Zdorovʹe rebenka. 2017;12(6):657–662. doi:10.22141/2224-0551.12.6.2017.112833. (in Ukrainian).

Moskalenko VF, Gul'chij OP, Golubchykov MV, et al., authors; Moskalenko VF, editor. Biostatystyka: pidruchnyk [Biostatistics: a textbook]. Kyiv: Knyga pljus; 2009. 184 p. (in Ukrainian).

Gubler EV. Vychislitel'nye metodiki analiza i raspoznavaniia patologicheskikh protsessov [Computational methods of analysis and recognition of pathological processes]. SPb: Meditsina; 1978. 294 p. (in Russian).

Delorme S, Jenderka KV, Deby J. Duale Reihe: Sonografie. Stutgard: Georg Thieme Verlag; 2012. 400 p. (in German).

Zelinska NB, Rudenko N, Krushinska ZG. Diseases of endocrine system in children of Ukraine in 2017: indicators of prevalence and incidence and their dynamics. Ukrainian Journal of Pediatric Endocrinology. 2018;(26):5–15. doi:10.30978/DE2018-2-5. (in Ukrainian).

Naidina TK, Dvoryakovsky IV, Sugak AB, Zakharova ES. Normal age dimensions of gall bladder, pancreas and liver for children on the echography data. Ultrasound and Functional Diagnostics. 2001;(4):57–63. (in Russian).

Abaturov A, Nikulina A. Еxpression of galectin 9 mRNA in lactose maldigestion and children’s obesity. International Journal of Integrative Pediatrics and Environmental Medicine. 2019;(5):10–15. doi:10.36013%2Fijipem.v4i1.52.

Abaturov AE, Stepanov YuM, Nikulina AA. Treatment of lactase deficiency in children’s obesity with genotype C/C 13910 of lactase gene. Wiadomości Lekarskie. 2019;72(1):17–21.

American Diabetes Association. Standards of Medical Care in Diabetes 2017. Diabetes Care. 2017;40(Suppl 1):1–135.

Beyerlein A, Chmiel R, Hummel S, Winkler C, Bonifacio E, Ziegler AG. Timing of gluten introduction and islet autoimmunity in young children: updated results from the BABYDIET study. Diabetes Care. 2014;37(9):e194–e195. doi:10.2337/dc14-1208.

Craig ME, Jefferies C, Dabelea D, et al. ISPAD Clinical Practice Consensus Guidelines 2014. Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabetes. 2014;15(Suppl 20):4–17. doi:10.1111/pedi.12186.

Davidson HW, Wenzlau JM, O'Brien RM. Zinc transporter 8 (ZnT8) and β cell function. Trends Endocrinol Metab. 2014;25(8):415–424. doi:10.1016/j.tem.2014.03.008.

De Boer IH, Sun W, Cleary PA, et al. Longitudinal changes in estimated and measured GFR in type 1 diabetes. J Am Soc Nephrol. 2014;25(4):810–818. doi:10.1681/ASN.2013050557.

Fabris M, Zago S, Liguori M, et al. Anti-zinc transporter protein 8 autoantibodies significantly improve the diagnostic approach to type 1 diabetes: an Italian multicentre study on paediatric patients. Auto Immun Highlights. 2015;6(1-2):17–22. doi:10.1007/s13317-015-0068-4.

Goldacre RR. Associations between birthweight, gestational age at birth and subsequent type 1 diabetes in children under 12: a retrospective cohort study in England, 1998-2012. Diabetologia. 2018;61(3):616–625. doi:10.1007/s00125-017-4493-y.

Miao H, Zhang J, Gu B, et al. Prognosis for residual islet β-cell secretion function in young patients with newly diagnosed type 1 diabetes. J Diabetes. 2019;11(10):818–825. doi:10.1111/1753-0407.12912.

Hagopian WA, Sanjeevi CB, Kockum I, et al. Glutamate decarboxylase-, insulin-, and islet cell-antibodies and HLA typing to detect diabetes in a general population-based study of Swedish children. J Clin Invest. 1995;95(4):1505–1511. doi:10.1172/JCI117822.

Howson JM, Stevens H, Smyth DJ, et al. Evidence that HLA class I and II associations with type 1 diabetes, autoantibodies to GAD and autoantibodies to IA-2, are distinct. Diabetes. 2011;60(10):2635–2644. doi:10.2337/db11-0131.

Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group, Jacobson AM, Musen G, et al. Long-term effect of diabetes and its treatment on cognitive function. N Engl J Med. 2007;356(18):1842–1852. doi:10.1056/NEJMoa066397.

Jensen MT, Sogaard P, Gustafsson I, et al. Echocardiography improves prediction of major adverse cardiovascular events in a population with type 1 diabetes and without known heart disease: the Thousand & 1 Study. Diabetologia. 2019;62(12):2354–2364. doi:10.1007/s00125-019-05009-2.

Katahira M, Ogata H, Ito T, et al. Association of Autoimmune Thyroid Disease with Anti-GAD Antibody ELISA Test Positivity and Risk for Insulin Deficiency in Slowly Progressive Type 1 Diabetes. J Diabetes Res. 2018;2018:1847430. doi:10.1155/2018/1847430.

Katsarou A, Gudbjörnsdottir S, Rawshani A, et al. Type 1 diabetes mellitus. Nat Rev Dis Primers. 2017;3:17016. doi:10.1038/nrdp.2017.16.

Lachin JM, McGee P, Palmer JP; DCCT/EDIC Research Group. Impact of C-peptide preservation on metabolic and clinical outcomes in the Diabetes Control and Complications Trial. Diabetes. 2014;63(2):739–748. doi:10.2337/db13-0881.

Landin-Olsson M, Karlsson A, Dahlquist G, Blom L, Lernmark A, Sundkvist G. Islet cell and other organ-specific autoantibodies in all children developing type 1 (insulin-dependent) diabetes mellitus in Sweden during one year and in matched control children. Diabetologia. 1989;32(6):387–395. doi:10.1007/bf00277264.

Michalska M, Zorena K, Wąż P, et al. Gaseous Pollutants and Particulate Matter (PM) in Ambient Air and the Number of New Cases of Type 1 Diabetes in Children and Adolescents in the Pomeranian Voivodeship, Poland. Biomed Res Int. 2020;2020:1648264. doi:10.1155/2020/1648264.

Mortensen HB, Swift PG, Holl RW, et al. Multinational study in children and adolescents with newly diagnosed type 1 diabetes: association of age, ketoacidosis, HLA status, and autoantibodies on residual beta-cell function and glycemic control 12 months after diagnosis. Pediatr Diabetes. 2010;11(4):218–226. doi:10.1111/j.1399-5448.2009.00566.x.

Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet. 2016;387(10035):2340–2348. doi:10.1016/S0140-6736(16)30507-4.

Schlosser M, Mueller PW, Törn C, Bonifacio E, Bingley PJ; Participating Laboratories. Diabetes Antibody Standardization Program: evaluation of assays for insulin autoantibodies. Diabetologia. 2010;53(12):2611–2620. doi:10.1007/s00125-010-1915-5.

Wenzlau JM, Hutton JC. Novel diabetes autoantibodies and prediction of type 1 diabetes. Curr Diab Rep. 2013;13(5):608–615. doi:10.1007/s11892-013-0405-9.

Ziegler AG, Rewers M, Simell O, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309(23):2473–2479. doi:10.1001/jama.2013.6285.

Copyright (c) 2020 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта