DOI: https://doi.org/10.22141/2224-0551.14.8.2019.190844

Medication effect on the biofilm dispersion. Amino acids and their derivatives

А.Е. Abaturov, Т.А. Kryuchko

Abstract


The scientific review presents the significance of some amino acids in the process of dispersing of bacterial biofilms. To write the article, information was searched using Scopus, Web of Science, MedLine, PubMed, Google Scholar, EMBASE, Global Health, the Cochrane Library, CyberLeninka. The influence of amino acids as nutrients on the late stages of biofilm life is considered, the effect of the D-enantiomers of amino acids on tryptophan and its derivatives on the biofilm dispersion is presented. It is emphasized that D-amino acids, namely, D-tyrosine, D-methionine, D-leucine, D-tryptophan, prevent the adhesion of amy­loid fibers, which keep the aggregation of the biofilms. D-amino acids inhibit the expression of genes involved in the production of components of the biofilm matrix, and thus realize their antibiotic effect. The ability of tryptophan to prevent the development and dispersion of biofilms, in particular those associated with the bacteria Pseudomonas aeruginosa, is highlighted. It is indicated that the role of anthranilates is to disrupt the structure of the biofilm and to stimulate the separation of sites from biofilms formed by the bacteria Pseudomonas aeruginosa. Anthranilates can help interrupt the chronicity of the infectious process. It is assumed that the use of amino acids and their derivatives, the creation of new chemical compounds that mimic the structure of amino acid molecules or alter the activity of the synthesis and degradation of certain amino acids will allow purposefully to control the life cycle of biofilms of certain types of pathogenic bacteria, which will contribute to the recovery of infectious recurrent and chronic diseases. The paper presents the prospect of developing new drugs based on anthranilic acid and halogenated indoles that promote bacterial eradication in respiratory tract infections associated with the development of bacterial biofilms of antibiotic-resistant bacterial agents.


Keywords


biofilm dispersion; respiratory tract; amino acids and their derivatives; recurrent and chronic infectious and inflammatory diseases; review

References


Aliashkevich A, Alvarez L, Cava F. New Insights Into the Mechanisms and Biological Roles of D-Amino Acids in Complex Eco-Systems. Front Microbiol. 2018 Apr 6;9:683. doi: 10.3389/fmicb.2018.00683.

Ampornaramveth RS, Akeatichod N, Lertnukkhid J, Songsang N. Application of D-Amino Acids as Biofilm Dispersing Agent in Dental Unit Waterlines. Int J Dent. 2018 Jan 14;2018:9413925. doi: 10.1155/2018/9413925.

Baltrus DA, Dougherty K, Diaz B, Murillo R. Evolutionary Plasticity of AmrZ Regulation in Pseudomonas. mSphere. 2018 Apr 18;3(2). pii: e00132-18. doi: 10.1128/mSphere.00132-18.

Bansal T, Englert D, Lee J, Hegde M, Wood TK, Jayaraman A. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect Immun. 2007 Sep;75(9):4597-607. doi: 10.1128/IAI.00630-07.

Basu Roy A, Sauer K. Diguanylate cyclase NicD-based signalling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa. Mol Microbiol. 2014 Nov;94(4):771-93. doi: 10.1111/mmi.12802.

Brandenburg KS, Rodriguez KJ, McAnulty JF, et al. Tryptophan inhibits biofilm formation by Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013 Apr;57(4):1921-5. doi: 10.1128/AAC.00007-13.

Cava F, Lam H, de Pedro MA, Waldor MK. Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cell Mol Life Sci. 2011 Mar;68(5):817-31. doi: 10.1007/s00018-010-0571-8.

Chakraborty P, Daware AV, Kumari M, et al. Free tryptophan residues inhibit quorum sensing of Pseudomonas aeruginosa: a potential approach to inhibit the development of microbial biofilm. Arch Microbiol. 2018 Dec;200(10):1419-1425. doi: 10.1007/s00203-018-1557-4.

Costaglioli P, Barthe C, Claverol S, et al. Costaglioli Evidence for the involvement of the anthranilate degradation pathway in Pseudomonas aeruginosa biofilm formation. Microbiologyopen. 2012 Sep;1(3):326-39. doi: 10.1002/mbo3.33.

Fleming D, Rumbaugh KP. Approaches to Dispersing Medical Biofilms. Microorganisms. 2017 Apr 1;5(2). pii: E15. doi: 10.3390/microorganisms5020015.

Harmata AJ, Ma Y, Sanchez CJ, et al. D-amino acid inhibits biofilm but not new bone formation in an ovine model. Clin Orthop Relat Res. 2015 Dec;473(12):3951-61. doi: 10.1007/s11999-015-4465-9.

Hassanov T, Karunker I, Steinberg N, Erez A, Kolodkin-Gal I. Novel antibiofilm chemotherapies target nitrogen from glutamate and glutamine. Sci Rep. 2018 May 8;8(1):7097. doi: 10.1038/s41598-018-25401-z.

Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R. Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J Bacteriol. 2011 Oct;193(20):5616-22. doi: 10.1128/JB.05534-11.

Jaglin M, Rhimi M, Philippe C, et al. Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats. Front Neurosci. 2018 Apr 9;12:216. doi: 10.3389/fnins.2018.00216.

Jones CJ, Ryder CR, Mann EE, Wozniak DJ. AmrZ modulates Pseudomonas aeruginosa biofilm architecture by directly repressing transcription of the psl operon. J Bacteriol. 2013 Apr;195(8):1637-44. doi: 10.1128/JB.02190-12.

Kim J, Park W. Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? J Microbiol. 2015 Jul;53(7):421-8. doi: 10.1007/s12275-015-5273-3.

Kim SK, Lee JH. Biofilm dispersion in Pseudomonas aeruginosa. J Microbiol. 2016 Feb;54(2):71-85. doi: 10.1007/s12275-016-5528-7.

Kim SK, Park HY, Lee JH. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect. Appl Environ Microbiol. 2015 Apr;81(7):2328-38. doi: 10.1128/AEM.03551-14.

Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. D-amino acids trigger biofilm disassembly. Science. 2010 Apr 30;328(5978):627-9. doi: 10.1126/science.1188628.

Kurnasov O, Jablonski L, Polanuyer B, Dorrestein P, Begley T, Osterman A. Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. FEMS Microbiol Lett. 2003 Oct 24;227(2):219-27. doi: 10.1016/S0378-1097(03)00684-0.

Lee JH, Kim YG, Gwon G, Wood TK, Lee J. Halogenated indoles eradicate bacterial persister cells and biofilms. AMB Express. 2016 Dec;6(1):123. doi: 10.1186/s13568-016-0297-6.

Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev. 2010 Jul;34(4):426-44. doi: 10.1111/j.1574-6976.2009.00204.x.

Lee JH, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol. 2015 Nov;23(11):707-718. doi: 10.1016/j.tim.2015.08.001.

Leiman SA, May JM, Lebar MD, Kahne D, Kolter R, Losick R. D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis. J Bacteriol. 2013 Dec;195(23):5391-5. doi: 10.1128/JB.00975-13.

Li XH, Kim SK, Lee JH. Anti-biofilm effects of anthranilate on a broad range of bacteria. Sci Rep. 2017 Aug 17;7(1):8604. doi: 10.1038/s41598-017-06540-1.

Li XH, Lee JH. Antibiofilm agents: A new perspective for antimicrobial strategy. J Microbiol. 2017 Oct;55(10):753-766. doi: 10.1007/s12275-017-7274-x.

Liu J, Prindle A, Humphries J, et al. Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature. 2015 Jul 30;523(7562):550-4. doi: 10.1038/nature14660.

Oppenheimer-Shaanan Y, Steinberg N, Kolodkin-Gal I. Small molecules are natural triggers for the disassembly of biofilms. Trends Microbiol. 2013 Nov;21(11):594-601. doi: 10.1016/j.tim.2013.08.005.

Pringle SL, Palmer KL, McLean RJ. Indole production provides limited benefit to Escherichia coli during co-culture with Enterococcus faecalis. Arch Microbiol. 2017 Jan;199(1):145-153. doi: 10.1007/s00203-016-1289-2.

Sanchez CJ, Akers KS, Romano DR, et al. D-amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014 Aug;58(8):4353-61. doi: 10.1128/AAC.02468-14.

Sanchez Z, Tani A, Kimbara K. Extensive reduction of cell viability and enhanced matrix production in Pseudomonas aeruginosa PAO1 flow biofilms treated with a D-amino acid mixture. Appl Environ Microbiol. 2013 Feb;79(4):1396-9. doi: 10.1128/AEM.02911-12.

Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol. 2004 Nov;186(21):7312-26. doi: 10.1128/JB.186.21.7312-7326.2004.






Copyright (c) 2020 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2019

 

   Seo анализ сайта