DOI: https://doi.org/10.22141/2224-0551.14.7.2019.184626

Pharmaceutical effect on the biofilm dispersion. Nitric oxide donors

А.Е. Abaturov, Т.А. Kryuchko

Abstract


The scientific review deals with the modern ideas about the importance of low concentrations of nitric oxide in the process of dispersing and eradicating of bacterial biofilms. For writing the article, information was searched using Scopus, Web of Science, MedLine, PubMed, Google Scholar, EMBASE, Global Health, The Cochrane Library, CyberLeninka. The paper highlights the value of nitric oxide in the development of relapses of respiratory infectious-inflammatory diseases. It is emphasized that the ability of nitric oxide at high (micromolar) concentrations can become a highly toxic compound for bacteria and an important component of the nonspecific protection of a macroorganism from pathogenic microorganisms, and at low (nanomolar) concentrations can act as a signaling molecule. The ability of nitrogen monoxide to disperse the biofilm of bacteria through increased expression or activity of proteins associated with the motility of bacteria pili, rhamnolipids is described. The characteristics of the main donors of nitric oxi­de and molecular platforms that can be used for their delivery to the macroorganism are presented. The main groups of nitric oxide donors are described, such as organic nitrates, nitrosylated metal compounds, diazenium diolates (N-diazeniumdiolate — NONOate) and S-nitrosothiols (S-nitrosothiol — RSNO). It is indicated that nitric oxide donors enhance the dispersion of biofilms and contribute to an increase in the antibacterial activity of antibiotics. The paper characterizes the molecular platforms for the delivery and optimization of the nitric oxide release regime: inorganic and polymer nanoparticles, organometallic coordination polymers, dendrimers, liposomes, micelles. The possibility of using these compounds to develop new drugs that will be effective in treating diseases associated with the formation of biofilms by pathogenic bacteria is underlined.

Keywords


biofilm dispersion; respiratory tract; nitric oxide donors; recurrent and chronic infectious and inflammatory diseases; review

References


Abaturov AE, Volosovets AP, Borysova TP. Activated Nitrogen-Containing Metabolites of the Human Body in Respiratory Diseases. Generators and Generation (Part 1). Child's Health. 2015;(66):136-140. (in Russian).

Abaturov AE, Volosovets AP, Borysova TP. Activated Nitrogen-Containing Metabolites of the Human Body in Respiratory Diseases. Generators and Generation (Part 2). Child's Health. 2015;(67):127-131. (in Russian).

Granik VG, Ryabova SYu, Grigoriev NB. Exogenous nitric oxide donors and inhibitors of its formation (the chemical aspects). Russ chem rev, 1997;66 (8):717-731. doi: 10.1070/RC1997v066n08ABEH000317. (in Russian).

Adnan NNM, Sadrearhami Z, Bagheri A, et al. Exploiting the Versatility of Polydopamine-Coated Nanoparticles to Deliver Nitric Oxide and Combat Bacterial Biofilm. Macromol Rapid Commun. 2018 Jul;39(13):e1800159. doi: 10.1002/marc.201800159.

Akter F, Coghlan G, de Mel A. Nitric oxide in paediatric respiratory disorders: novel interventions to address associated vascular phenomena? Ther Adv Cardiovasc Dis. 2016 Aug;10(4):256-70. doi: 10.1177/1753944716649893.

Allan RN, Morgan S, Brito-Mutunayagam S, et al. Low Concentrations of Nitric Oxide Modulate Streptococcus pneumoniae Biofilm Metabolism and Antibiotic Tolerance. Antimicrob Agents Chemother. 2016 Mar 25;60(4):2456-66. doi: 10.1128/AAC.02432-15.

Arora DP, Hossain S, Xu Y, Boon EM. Nitric Oxide Regulation of Bacterial Biofilms. Biochemistry. 2015 Jun 23;54(24):3717-28. doi: 10.1021/bi501476n.

Backlund CJ, Worley BV, Schoenfisch MH. Anti-biofilm action of nitric oxide-releasing alkyl-modified poly(amidoamine) dendrimers against Streptococcus mutans. Acta Biomater. 2016 Jan;29:198-205. doi: 10.1016/j.actbio.2015.10.021.

Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol. 2006 Nov;188(21):7344-53. doi: 10.1128/JB.00779-06.

Barraud N, Kelso MJ, Rice SA, Kjelleberg S. Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. Curr Pharm Des. 2015;21(1):31-42. doi: 10.2174/1381612820666140905112822.

Berlanga M, Guerrero R. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Fact. 2016 Oct 1;15(1):165. doi: 10.1186/s12934-016-0569-5.

Cai W, Wu J, Xi C, Meyerhoff ME. Diazeniumdiolate-doped poly(lactic-co-glycolic acid)-based nitric oxide releasing films as antibiofilm coatings. Biomaterials. 2012 Nov;33(32):7933-44. doi: 10.1016/j.biomaterials.2012.07.027.

Chan AC, Bravo Cadena M, Townley HE, Fricker MD, Thompson IP. Effective delivery of volatile biocides employing mesoporous silicates for treating biofilms. J R Soc Interface. 2017 Jan;14(126). pii: 20160650. doi: 10.1098/rsif.2016.0650.

Chatterjee D, Cooley RB, Boyd CD, Mehl RA, O'Toole GA, Sondermann H. Mechanistic insight into the conserved allosteric regulation of periplasmic proteolysis by the signaling molecule cyclic-di-GMP. Elife. 2014 Sep 2;3:e03650. doi: 10.7554/eLife.03650.

Choudhary S, Gupta L, Rani S, Dave K, Gupta U. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules. Front Pharmacol. 2017 May 16;8:261. doi: 10.3389/fphar.2017.00261.

Claes B, Boudewijns T, Muchez L, et al. Smart Metal-Organic Framework Coatings: Triggered Antibiofilm Compound Release. ACS Appl Mater Interfaces. 2017 Feb 8;9(5):4440-4449. doi: 10.1021/acsami.6b14152.

Cobb A, Thornton L. Hyperinflation of Nitroprusside. J Pharm Pract. 2018 Aug;31(4):382-389. doi: 10.1177/0897190018762182.

Cutruzzolà F, Rinaldo S, Centola F, Brunori M. NO production by Pseudomonas aeruginosa cd1 nitrite reductase. IUBMB Life. 2003 Oct-Nov;55(10-11):617-21. doi: 10.1080/15216540310001628672.

Cutruzzolà F, Frankenberg-Dinkel N. Origin and Impact of Nitric Oxide in Pseudomonas aeruginosa Biofilms. J Bacteriol. 2016 Jan 1;198(1):55-65. doi: 10.1128/JB.00371-15.

Duan F, Feng X, Jin Y, et al. Metal-carbenicillin framework-based nanoantibiotics with enhanced penetration and highly efficient inhibition of MRSA. Biomaterials. 2017 Nov;144:155-165. doi: 10.1016/j.biomaterials.2017.08.024.

Fida TT, Voordouw J, Ataeian M, et al. Synergy of Sodium Nitroprusside and Nitrate in Inhibiting the Activity of Sulfate Reducing Bacteria in Oil-Containing Bioreactors. Front Microbiol. 2018 May 16;9:981. doi: 10.3389/fmicb.2018.00981.

Ganzarolli de Oliveira M. S-Nitrosothiols as Platforms for Topical Nitric Oxide Delivery. Basic Clin Pharmacol Toxicol. 2016 Oct;119 Suppl 3:49-56. doi: 10.1111/bcpt.12588.

Giacalone D, Smith TJ, Collins AJ, Sondermann H, Koziol LJ, O'Toole GA. Ligand-Mediated Biofilm Formation via Enhanced Physical Interaction between a Diguanylate Cyclase and Its Receptor. MBio. 2018 Jul 10;9(4). pii: e01254-18. doi: 10.1128/mBio.01254-18.

Hasan S, Albayaty YNS, Thierry B, Prestidge CA, Thomas N. Mechanistic studies of the antibiofilm activity and synergy with antibiotics of isosorbide mononitrate. Eur J Pharm Sci. 2018 Mar 30;115:50-56. doi: 10.1016/j.ejps.2018.01.003.

Hemeg HA. Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine. 2017 Nov 10;12:8211-8225. doi: 10.2147/IJN.S132163.

Horst BG, Marletta MA. Physiological activation and deactivation of soluble guanylate cyclase. Nitric Oxide. 2018 Jul 1;77:65-74. doi: 10.1016/j.niox.2018.04.011.

Hossain S, Nisbett LM, Boon EM. Discovery of Two Bacterial Nitric Oxide-Responsive Proteins and Their Roles in Bacterial Biofilm Regulation. Acc Chem Res. 2017 Jul 18;50(7):1633-1639. doi: 10.1021/acs.accounts.7b00095.

Hwang S, Cha W, Meyerhoff ME. Polymethacrylates with a covalently linked CuII-cyclen complex for the in situ generation of nitric oxide from nitrosothiols in blood. Angew Chem Int Ed Engl. 2006 Apr 21;45(17):2745-8. doi: 10.1002/anie.200503588.

Indra A, Song T, Paik U. Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage. Adv Mater. 2018 Sep;30(39):e1705146. doi: 10.1002/adma.201705146.

Jardeleza C, Thierry B, Rao S, et al. An in vivo safety and efficacy demonstration of a topical liposomal nitric oxide donor treatment for Staphylococcus aureus biofilm-associated rhinosinusitis. Transl Res. 2015 Dec;166(6):683-92. doi: 10.1016/j.trsl.2015.06.009.

Kang Y, Kim J, Lee YM, Im S, Park H, Kim WJ. Nitric oxide-releasing polymer incorporated ointment for cutaneous wound healing. J Control Release. 2015 Dec 28;220(Pt B):624-30. doi: 10.1016/j.jconrel.2015.08.057.

Khan I, Gothwal A, Sharma AK, et al. PLGA Nanoparticles and Their Versatile Role in Anticancer Drug Delivery. Crit Rev Ther Drug Carrier Syst. 2016;33(2):159-93. doi: 10.1615/CritRevTherDrugCarrierSyst.2016015273.

Li X, Jiang X. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Adv Drug Deliv Rev. 2018 Mar 15;128:101-114. doi: 10.1016/j.addr.2017.12.015.

Li XH, Lee JH. Antibiofilm agents: A new perspective for antimicrobial strategy. J Microbiol. 2017 Oct;55(10):753-766. doi: 10.1007/s12275-017-7274-x.

Li Y, Heine S, Entian M, Sauer K, Frankenberg-Dinkel N. NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by an MHYT domain-coupled phosphodiesterase. J Bacteriol. 2013 Aug;195(16):3531-42. doi: 10.1128/JB.01156-12.

Lu Y, Slomberg DL, Shah A, Schoenfisch MH. Nitric oxide-releasing amphiphilic poly(amidoamine) (PAMAM) dendrimers as antibacterial agents. Biomacromolecules. 2013 Oct 14;14(10):3589-98. doi: 10.1021/bm400961r.

Lu Y, Slomberg DL, Sun B, Schoenfisch MH. Shape- and nitric oxide flux-dependent bactericidal activity of nitric oxide-releasing silica nanorods. Small. 2013 Jun 24;9(12):2189-98. doi: 10.1002/smll.201201798.

Metal-Organic Frameworks (MOF), or organometallic coordination polymers (MCOP). Kazan; 2013. 41 p.

Moore CM, Nakano MM, Wang T, Ye RW, Helmann JD. Response of Bacillus subtilis to nitric oxide and the nitrosating agent sodium nitroprusside. J Bacteriol. 2004 Jul;186(14):4655-64. doi: 10.1128/JB.186.14.4655-4664.2004.

Naghavi N, de Mel A, Alavijeh OS, Cousins BG, Seifalian AM. Nitric oxide donors for cardiovascular implant applications. Small. 2013 Jan 14;9(1):22-35. doi: 10.1002/smll.201200458.

Nairz M, Dichtl S, Schroll A, et al. Iron and innate antimicrobial immunity-Depriving the pathogen, defending the host. J Trace Elem Med Biol. 2018 Jul;48:118-133. doi: 10.1016/j.jtemb.2018.03.007.

Newell PD, Monds RD, O'Toole GA. LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3461-6. doi: 10.1073/pnas.0808933106.

Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013 Nov;65(13-14):1803-15. doi: 10.1016/j.addr.2013.07.011.

Petrova OE, Cherny KE, Sauer K. The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA. J Bacteriol. 2015 Jan 1;197(1):174-87. doi: 10.1128/JB.02244-14.

Petrova OE, Sauer K. PAS domain residues and prosthetic group involved in BdlA-dependent dispersion response by Pseudomonas aeruginosa biofilms. J Bacteriol. 2012 Nov;194(21):5817-28. doi: 10.1128/JB.00780-12.

Ramezani M, Ebrahimian M, Hashemi M. Current Strategies in the Modification of PLGA-based Gene Delivery System. Curr Med Chem. 2017;24(7):728-739. doi: 10.2174/0929867324666161205130416.

Rinaldo S, Giardina G, Mantoni F, Paone A, Cutruzzolà F. Beyond nitrogen metabolism: nitric oxide, cyclic-di-GMP and bacterial biofilms. FEMS Microbiol Lett. 2018 Mar 1;365(6). doi: 10.1093/femsle/fny029.

Rinaldo S, Giardina G, Brunori M, Cutruzzolà F. N-oxide sensing and denitrification: the DNR transcription factors. Biochem Soc Trans. 2006 Feb;34(Pt 1):185-7. doi: 10.1042/BST0340185.

Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int J Pharm. 2018 Sep 5;548(1):707-720. doi: 10.1016/j.ijpharm.2018.07.030.

Suchyta DJ, Schoenfisch MH. Encapsulation of N-Diazeniumdiolates within Liposomes for Enhanced Nitric Oxide Donor Stability and Delivery. Mol Pharm. 2015 Oct 5;12(10):3569-74. doi: 10.1021/acs.molpharmaceut.5b00248.

Sun B, Slomberg DL, Chudasama SL, Lu Y, Schoenfisch MH. Nitric oxide-releasing dendrimers as antibacterial agents. Biomacromolecules. 2012 Oct 8;13(10):3343-54. doi: 10.1021/bm301109c.

Tsai AL, Martin E, Berka V, Olson JS. How do heme-protein sensors exclude oxygen? Lessons learned from cytochrome c', Nostoc puntiforme heme nitric oxide/oxygen-binding domain, and soluble guanylyl cyclase. Antioxid Redox Signal. 2012 Nov 1;17(9):1246-63. doi: 10.1089/ars.2012.4564.

Wo Y, Brisbois EJ, Bartlett RH, Meyerhoff ME. Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO). Biomater Sci. 2016 Aug 19;4(8):1161-83. doi: 10.1039/c6bm00271d.

Wood TK. Biofilm dispersal: deciding when it is better to travel. Mol Microbiol. 2014 Nov;94(4):747-50. doi: 10.1111/mmi.12797.

Worley BV, Schilly KM, Schoenfisch MH. Anti-Biofilm Efficacy of Dual-Action Nitric Oxide-Releasing Alkyl Chain Modified Poly(amidoamine) Dendrimers. Mol Pharm. 2015 May 4;12(5):1573-83. doi: 10.1021/acs.molpharmaceut.5b00006.

Yang L, Feura ES, Ahonen MJR, Schoenfisch MH. Nitric Oxide-Releasing Macromolecular Scaffolds for Antibacterial Applications. Adv Healthc Mater. 2018 Jul;7(13):e1800155. doi: 10.1002/adhm.201800155.

Yang TI, Zelikin AN, Chandrawati R. Progress and Promise of Nitric Oxide-Releasing Platforms. Adv Sci (Weinh). 2018 Apr 23;5(6):1701043. doi: 10.1002/advs.201701043.

Zhang H, Tian XT, Shang Y, Li YH, Yin XB. Theranostic Mn-Porphyrin Metal-Organic Frameworks for Magnetic Resonance Imaging-Guided Nitric Oxide and Photothermal Synergistic Therapy. ACS Appl Mater Interfaces. 2018 Aug 29;10(34):28390-28398. doi: 10.1021/acsami.8b09680.

Zheng Y, Tsuji G, Opoku-Temeng C, Sintim HO. Inhibition of P. aeruginosa c-di-GMP phosphodiesterase RocR and swarming motility by a benzoisothiazolinone derivative. Chem Sci. 2016 Sep 1;7(9):6238-6244. doi: 10.1039/c6sc02103d.






Copyright (c) 2020 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2020

 

   Seo анализ сайта