Chronic Helicobacter pylori-assotiated infection in children, paracellular permeability of the gastric mucosa and food allergy




Helicobacter pylori, children, food allergy, claudins, tight junctions, paracellular permeability


Currently, issues related to tight junction dysfunction, are one of the most relevant and studied in scientific world. In spite of significant achievements, many problems are still open today. This review discusses the molecular structure and regulation of stomach tight junctions, the relationship between Helicobacter pylori and food allergy in children and the possibility of pharmacological regulation of paracellular permeability of the gastric mucosa. To write the article, information was searched using Scopus, Web of Science, MEDLINE, PubMed and Google Scholar databases.


MOH of Ukraine. Uniform clinical protocol of the medical care for children with gastroesophageal reflux disease: Order 59 from 29.01.2013. Available from: (in Ukrainian).

Abaturov OE, Gerasimenko OM. Modulation of the activity of TLR4 epithelial cells of the gastric mucosa during Helicobacter pylori infection. Sovremennaya pediatriya. 2009;(28):141-146. (In Ukrainian).

Abaturov OE, Gerasimenko ON, Zavhorodnia NYu. Hronicheskie CagA(+)Helicobacter pylori-associirovannye gastrity u detej [Chronic CagA (+) Helicobacter pylori-associated gastritis in children]. Monograph. Kharkov: SAM; 2014. 412 p. (in Russian).

Nekhaienko MI. Current views on chronic disease of gastroduodenal area in adolescents. Zbirnik naukovih pracʹ spivrobitnikiv NMAPO imeni P.L. Supika. 2016; 25:638-644. (In Ukrainian).

Beketova GV. Chronic gastroduodenitis in children and adolescents: epidemiology, etiology, pathogenesis, diagnosis (part I). Dytyachyj likar. 2012;(6):20-24. (In Ukrainian).

Beketova GV. Treatment of chronic gastroduodenitis in children and adolescents (Part II). Dytyachyj likar. 2012;(8):13-15. (In Ukrainian).

Shadrin OG. Helicobacter pylori among children: modern approaches to the diagnosis and ways to optimize the therapy. Sovremennaya pediatriya. 2014;5(61):119-127. doi:10.15574/SP.2014.61.119. (In Russian).

Shabrawy RM, Gharib K. Helicobacter pylori infection as a risk factor in patients suffering from food allergy and urticarial. Egypt J Immunol. 2016 Jan;23(1):67-75.

Ma ZF, Majid NA, Yamaoka Y, Lee YY. Food allergy and Helicobacter pylori infection: a systematic review. Front Microbiol. 2016 Mar 23;7:368. doi: 10.3389/fmicb.2016.00368.

Roxas JL, Viswanathan VK. Modulation of intestinal paracellular transport by bacterial pathogens. Compr Physiol. 2018 Mar 25;8(2):823-842. doi: 10.1002/cphy.c170034.

Zeisel MB, Dhawan P, Baumert TF. Tight junction proteins in gastrointestinal and liver disease. Gut. 2018 Oct 8. pii: gutjnl-2018-316906. doi: 10.1136/gutjnl-2018-316906.

Tyler JC, Kathleen ES, James GF, Susan JH. Tight junction disruption: Helicobacter pylori and dysregulation of the gastric mucosal barrier. World J Gastroenterol. 2015 Oct 28;21(40):11411-27. doi: 10.3748/wjg.v21.i40.11411.

Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE. Structure and function of claudins. Biochim Biophys Acta. 2008 Mar;1778(3):631-45. doi: 10.1016/j.bbamem.2007.10.018.

Furuse M. Molecular Basis of the Core Structure of Tight Junction. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a002907. doi: 10.1101/cshperspect.a002907.

Anderson JM, Van Itallie CM. Physiology and Function of the Tight Junction. Cold Spring Harb Perspect Biol. 2009 Aug;1(2):a002584. doi: 10.1101/cshperspect.a002584.

Shi J, Barakat M, Chen D, Chen L. Bicellular Tight Junctions and Wound Healing. Int J Mol Sci. 2018 Dec 4;19(12). pii: E3862. doi: 10.3390/ijms19123862.

Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol. 2014 Dec;36:157-65. doi: 10.1016/j.semcdb.2014.08.011. 

Vermette D, Hu P, Canarie MF, Funaro M, Glover J, Pierce RW. Tight junction structure, function, and assessment in the critically ill: a systematic review. Intensive Care Med Exp. 2018 Sep 26;6(1):37. doi: 10.1186/s40635-018-0203-4.

Furuse M, Hirase T, Itoh M, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993 Dec;123(6 Pt 2):1777-88.

Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol. 2002 Jun;38(6):323-37. doi: 10.1016/S1537-1891(02)00200-8.

Saitou M, Furuse M, Sasaki H, et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell. 2000 Dec;11(12):4131-42. doi: 10.1091/mbc.11.12.4131.

Kale SL, Agrawal K, Gaur SN, Arora N. Cockroach protease allergen induces allergic airway inflammation via epithelial cell activation. Sci Rep. 2017 Feb;7:42341. doi: 10.1038/srep42341.

Günzel D. Claudins: vital partners in transcellular and paracellular transport coupling. Pflugers Arch. 2017 Jan;469(1):35-44. doi: 10.1007/s00424-016-1909-3.

Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004 Jun;286(6):C1213-28. doi: 10.1152/ajpcell.00558.2003.

Fanning AS, Mitic LL, Anderson JM. Occludin and claudins: transmembrane proteins of the tight junction. J Am Soc Nephrol. 1999 Jun;10(6):1337-45.

Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions.  Nat Rev Mol Cell Biol. 2001 Apr;2(4):285-293. doi: 10.1038/35067088.

Rüffer C, Gerke V. The C-terminal cytoplasmic tail of claudins 1 and 5 but not its PDZ-binding motif is required for apical localization at epithelial and endothelial tight junctions. Eur J Cell Biol. 2004 May;83(4):135-44. doi: 10.1078/0171-9335-00366.

Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita K. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998 Jun;141(7):1539-50. doi: 10.1083/jcb.141.7.1539.

Günzel D, Yu SA. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013 Apr;93(2):525-569. doi: 10.1152/physrev.00019.2012.

Suzuki H, Tani K, Tamura A, Tsukita S, Fujiyoshi Y. Model for the architecture of claudin-based paracellular ion channels through tight junctions. J Mol Biol. 2015 Jan 30;427(2):291-7. doi: 10.1016/j.jmb.2014.10.020.

Suzuki H, Nishizawa T, Tani K, et al. Crystal structure of a claudin provides insight into the architecture of tight junctions. Science. 2014 Apr;344(6181):304-7. doi: 10.1126/science.1248571.

Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci. 2013 Feb;70(4):631-59. doi: 10.1007/s00018-012-1070-x.

Price DB, Ackland ML, Burks W, Knight MI, Suphioglu C. Peanut allergens alter intestinal barrier permeability and tight junction localisation in Caco-2 cell cultures. Cell Physiol Biochem. 2014;33(6):1758-77. doi: 10.1159/000362956.

Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012 Nov 9;9(1):23. doi: 10.1186/2045-8118-9-23.

Song X, Chen HX, Wang XY, et al. H. pylori-encoded CagA disrupts tight junctions and induces invasiveness of AGS gastric carcinoma cells via Cdx2-dependent targeting of Claudin-2. Cell Immunol. 2013 Nov-Dec;286(1-2):22-30. doi: 10.1016/j.cellimm.2013.10.008.

Wesemann DR, Nagler CR. The Microbiome, Timing, and Barrier Function in the Context of Allergic Disease. Immunity. 2016 Apr;44(4):728-38. doi: 10.1016/j.immuni.2016.02.002.

Stefka AT, Feehley T, Tripathi P, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA. 2014 Sep;111(36):13145-50. doi: 10.1073/pnas.1412008111.

Brandt EB, Strait RT, Hershko D, et al. Mast cells are required for experimental oral allergen-induced diarrhea. J Clin Invest. 2003 Dec;112(11):1666-77. doi: 10.1172/JCI19785.

Han X, Li JY, Huang S, Spence J, Owyang C. Soluble Protein P40 Produced by Lactobacillus RhamnosusGG Enhances Tight Junction Protein Expression and Improves Epithelial Integrity by Preventing Alteration of DNA Methylation and Histone Acetylation in Human Colonoids. Gastroenterology. 2017 Apr;152(5 suppl 1):S120. doi: 10.1016/S0016-5085(17)30738-2.

Blackwood BP, Yuan CY, Wood DR, Nicolas JD, Grothaus JS, Hunter CJ. Probiotic Lactobacillus Species Strengthen Intestinal Barrier Function and Tight Junction Integrity in Experimental Necrotizing Enterocolitis. J Probiotics Health. 2017 Apr;5(1). pii: 159. doi: 10.4172/2329-8901.100015. 

Orlando A, Linsalata M, Bianco G, et al. Lactobacillus rhamnosus GG Protects the Epithelial Barrier of Wistar Rats from the Pepsin-Trypsin-Digested Gliadin (PTG)-Induced Enteropathy. Nutrients. 2018 Nov 7;10(11). pii: E1698. doi: 10.3390/nu10111698.

Tan-Lim CS, Esteban-Ipac NA. Probiotics as treatment for food allergies among pediatric patients: a meta-analysis. World Allergy Organ J. 2018 Nov;11(1):25. doi: 10.1186/s40413-018-0204-5.

Fang S, Zhang Y, Zhang Y, Zhu X, Yie B. Lactobacillus rhamnosus GG improves symptoms and its mechnism in mice with ovalbumin-induced food allergy. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2017 May;33(5):597-600. (In Chinese).

Eshrati M, Amadei F, Staffer S, Stremmel W, Tanaka M. Shear-Enhanced Dynamic Adhesion of Lactobacillus rhamnosus GG on Intestinal Epithelia: Correlative Effect of Protein Expression and Interface Mechanics. Langmuir. 2018 Dec;35(2):529-537. doi: 10.1021/acs.langmuir.8b02931.

Chen L, Li H, Li J, Chen Y, Yang Y. Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates microbiota dysbiosis in an experimental model of sepsis. Int J Mol Med. 2019 Jan 7; 1139-1148. doi: 10.3892/ijmm.2019.4050.





Review of Literature