Drug suppression of bacterial adhesion in respiratory infections

А.Е. Abaturov, Т.А. Kryuchko


The adhesion of bacteria on the mucosa of the respiratory tract is realized by the functioning of various mechanisms. One of them is the formation of thread-like protein organelles, known as pili (fimbriae or villi). Drugs with action directed at the mechanisms of adhesion of bacteria can prevent the development of the infectious process and the formation of biofilms. At the present time, numerous drugs are being developed, their action is aimed at suppressing the synthesis of various components of pili, and for which reason they are collectively known as pilicides. However, anti-adhesion therapy, despite obvious interest of scientists, is not used to treat bacterial infections. In all likelihood, the causes for the inade­quate use of antiadhesive drugs in bacterial infections are: 1) the multiplicity of bacterial adhesion molecules; 2) the dependence of adhesin production on the stage of the infectious process and the affected tissue of macroorganism; 3) the need for a high level of affinity in adhesion inhibitors. It can be assumed that further study of the direct mechanisms of specific interaction of bacterial adhesins with the cells of a macroorganism will undoubtedly allow the deve­lopment of new effective antiadhesive drugs that will be used for the treatment of bacterial infections in routine medical practice.


bacterial adhesion; antiadhesive drugs; bacterial infections


Abaturov AE, Kryuchko TA. Inhibition of bacterial virulence factors as a method of treating bacterial pneumonia. Zdorov`e rebenka. 2018;13(2):224-231. doi: 10.22141/2224-0551.13.2.2018.129557. (in Russian).

Rekstina VV, Gorkovskii AA, Bezsonov EE, Kalebina TS. Cell surface amyloid proteins of microorganisms: structure, properties and significance in medicine. Bulletin of the Russian State Medical University. 2016;(1):4-13. doi: 10.24075/brsmu.2016-01-01. (in Russian).

Berg V, Sellstedt M, Hedenström M, Pinkner JS, Hultgren SJ, Almqvist F. Design, synthesis and evaluation of peptidomimetics based on substituted bicyclic 2-pyridones-targeting virulence of uropathogenic E. coli. Bioorg Med Chem. 2006 Nov 15;14(22):7563-81. doi: 10.1016/j.bmc.2006.07.017.

Busch A, Phan G, Waksman G. Molecular mechanism of bacterial type 1 and P pili assembly. Philos Trans A Math Phys Eng Sci. 2015 Mar 6;373(2036). pii: 20130153. doi: 10.1098/rsta.2013.0153.

Cegelski L, Pinkner JS, Hammer ND, et al. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol. 2009 Dec;5(12):913-9. doi: 10.1038/nchembio.242.

Chahales P, Hoffman PS, Thanassi DG et al. Nitazoxanide Inhibits Pilus Biogenesis by Interfering with Folding of the Usher Protein in the Outer Membrane. Antimicrob Agents Chemother. 2016 Mar 25;60(4):2028-38. doi: 10.1128/AAC.02221-15.

Chemani C, Imberty A, de Bentzmann S, et al. Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect Immun. 2009 May;77(5):2065-75. doi: 10.1128/IAI.01204-08.

Cozens D, Read RC. Anti-adhesion methods as novel therapeutics for bacterial infections// Expert Rev Anti Infect Ther. 2012 Dec;10(12):1457-68. doi: 10.1586/eri.12.145.

Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002 Sep;8(9):881-90. doi: 10.3201/eid0809.020063.

Gustke H, Kleene R, Loers G, et al. Inhibition of the bacterial lectins of Pseudomonas aeruginosa with monosaccharides and peptides. Eur J Clin Microbiol Infect Dis. 2012 Feb;31(2):207-15. doi: 10.1007/s10096-011-1295-x.

Haataja S, Verma P, Fu O, et al. Rationally designed chemically modified glycodendrimer ligand analogues inhibit Streptococcus suis adhesin SadP in picomolar concentrations. Chemistry. 2018 Feb 6;24(8):1905-1912. doi: 10.1002/chem.201704493.

Han Z, Pinkner JS, Ford B, et al. Lead optimization studies on FimH antagonists: discovery of potent and orally bioavailable ortho-substituted biphenyl mannosides. J Med Chem. 2012 Apr 26;55(8):3945-59. doi: 10.1021/jm300165m.

Hartmann M, Papavlassopoulos H, Chandrasekaran V, et al. Inhibition of bacterial adhesion to live human cells: activity and cytotoxicity of synthetic mannosides. FEBS Lett. 2012 May 21;586(10):1459-65. doi: 10.1016/j.febslet.2012.03.059.

Idänpään-Heikkilä I, Simon PM, Zopf D, et al. Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J Infect Dis. 1997 Sep;176(3):704-12.

Nitazoxanide Impurity 1. Available from:

Hymes JP, Klaenhammer TR. Stuck in the Middle: Fibronectin-Binding Proteins in Gram-Positive Bacteria. Front Microbiol. 2016 Sep 22;7:1504. doi: 10.3389/fmicb.2016.01504.

Idänpään-Heikkilä I, Simon PM, Zopf D, et al. Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J Infect Dis. 1997 Sep;176(3):704-12.

Johansson EM, Crusz SA, Kolomiets E, et al. Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Chem Biol. 2008 Dec 22;15(12):1249-57. doi: 10.1016/j.chembiol.2008.10.009.

Johnson BK, Abramovitch RB. Small Molecules That Sabotage Bacterial Virulence. Trends Pharmacol Sci. 2017 Apr;38(4):339-362. doi: 10.1016/

Karygianni L, Al-Ahmad A, Argyropoulou A, Hellwig E, Anderson AC, Skaltsounis AL. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms. Front Microbiol. 2016 Jan 14;6:1529. doi: 10.3389/fmicb.2015.01529.

Khare B, V L Narayana S. Pilus biogenesis of Gram-positive bacteria: Roles of sortases and implications for assembly. Protein Sci. 2017 Aug;26(8):1458-1473. doi: 10.1002/pro.3191.

King JE, Roberts IS. Bacterial Surfaces: Front Lines in Host-Pathogen Interaction. Adv Exp Med Biol. 2016;915:129-56. doi: 10.1007/978-3-319-32189-9_10.

Klemm P, Vejborg RM, Hancock V. Prevention of bacterial adhesion. Appl Microbiol Biotechnol. 2010 Sep;88(2):451-9. doi: 10.1007/s00253-010-2805-y.

Lillington J, Geibel S, Waksman G. Biogenesis and adhesion of type 1 and P pili. Biochim Biophys Acta. 2014 Sep;1840(9):2783-93. doi: 10.1016/j.bbagen.2014.04.021.

Ofek I, Hasty DL, Sharon N. Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol. 2003 Oct 15;38(3):181-91.

Rampioni G, Leoni L, Williams P. The art of antibacterial warfare: Deception through interference with quorum sensing-mediated communication. Bioorg Chem. 2014 Aug;55:60-8. doi: 10.1016/j.bioorg.2014.04.005.

Sharon N. Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta. 2006 Apr;1760(4):527-37. doi: 10.1016/j.bbagen.2005.12.008.

Signoretto C, Canepari P, Stauder M, et al Functional foods and strategies contrasting bacterial adhesion. Curr Opin Biotechnol. 2012 Apr;23(2):160-7. doi: 10.1016/j.copbio.2011.08.006.

Spirig T, Weiner EM, Clubb RT. Sortase enzymes in Gram-positive bacteria. Mol Microbiol. 2011 Dec;82(5):1044-59. doi: 10.1111/j.1365-2958.2011.07887.x.

Stones DH, Krachler AM. Against the tide: the role of bacterial adhesion in host colonization. Biochem Soc Trans. 2016 Dec 15;44(6):1571-1580. doi: 10.1042/BST20160186.

Tchouaffi-Nana F, Ballard TE, Cary CH, Macdonald TL, Sifri CD, Hoffman PS. Nitazoxanide inhibits biofilm formation by Staphylococcus epidermidis by blocking accumulation on surfaces. Antimicrob Agents Chemother. 2010 Jul;54(7):2767-74. doi: 10.1128/AAC.00901-09.

Thomas R, Brooks T. Attachment of Yersinia pestis to human respiratory cell lines is inhibited by certain oligosaccharides. J Med Microbiol. 2006 Mar;55(Pt 3):309-15. doi: 10.1099/jmm.0.46102-0.

Copyright (c) 2020 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта