Abstract
The article presents the results of bacteriological monitoring of 483 children aged 3 to 14 years with acute respiratory diseases in Zaporizhzhia and Zaporizhzhia region in 2017. It was found that leading pathogens were Streptococcus pneumoniae (49.4 %) and bacteria of the genus Haemophilus (36.2 %) in the presence of bacterial respiratory infection. The analysis of the antibiotic susceptibility patterns showed that the microorganisms demonstrated the highest sensitivity to the third-/fourth-generation cephalosporins, vancomycin, linezolid and levofloxacin. There was noted a high antibiotic resistance of Streptococcus pneumoniae to penicillins (56 % of strains), clindamycin (43 % of strains) and erythromycin (45 % of strains). The isolates of bacteria of the genus Haemophilus most often showed resistance to the ampicillin (58.1 % of strains) and protected penicillins (52 % of strains). On the basis of obtained data, there was substantiated the expediency of using cefpodoxime proxetil, the third-generation cephalosporin, as the starting antibacterial drug in the therapy of acute bacterial respiratory infection in children.
Keywords
acute bacterial respiratory diseases; children; Streptococcus pneumoniae; Haemophilus spp.; cefpodoxime proxetil
References
Walker D, Fowler T, Watson J, Livermore DM, Walker D. Annual Report of the Chief Medical Officer: Infections and the Rise of Antimicrobial Resistance. Lancet. 2013 May 11;381(9878):1606-9. doi: 10.1016/S0140-6736(13)60604-2.
World Economic Forum. Global Risks 2013. 8th ed. Available from: http://reports.weforum.org/global-risks-2013/.
World Economic Forum. Global Risks 2014. Available from: https://www.weforum.org/reports/global-risks-2014.
World Health Organization. Antimicrobial Resistance: Global Report on Surveillance 2014. Available from: https://www.who.int/drugresistance/documents/surveillancereport/en/.
Hampton T. Report reveals scope of US antibiotic resistance threat. JAMA. 2013 Oct 23;310(16):1661-3. doi: 10.1001/jama.2013.280695.
Cornick JE, Bentley SD. Streptococcus pneumoniae: the evolution of antimicrobial resistance to beta-lactams, fluoroquinolones and macrolides. Microbes Infect. 2012 Jul;14(7-8):573-83. doi: 10.1016/j.micinf.2012.01.012.
Goossens H, Ferech M, Vander Stichele R, Elseviers M; ESAC Project Group. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet. 2005 Feb 12-18;365(9459):579-87. doi: 10.1016/S0140-6736(05)17907-0.
Molchanova OV. Optimization of the treatment of community-acquired pneumonia in the hospital, taking into account the modifying factors. Antibiotikoterapiya tyazheloy vnebolnichnoy pnevmonii. Clinical Microbiology and Antimicrobial Chemotherapy. 2009;11(2):183-188. (in Russian).
Zhanbaeva AK, Tilekeeva UM. Comparative analysis of the spectrum of pathogens of community-acquired pneumonia and their sensitivity and resistance to antibacterial drugs in 2 neighboring regions in the Kyrgyz Republic. In: Proceeding of the II international Conference - Science, education, society: trends and development prospects. 2016 Feb 7; Cheboksary. RF, Cheboksary: Interaktiv plius; 2016. 30-33 pp. (in Russian).
The European Committee on Antimicrobial Susceptibility Testing. EUCAST Disk Diffusion Test Methodology - Version 6.0. January 2017. Available from: http://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology/.
Lezhenko GA, Pashkova OYe, Pantyushenko LI. Rational Antibacterial Therapy of Respiratory Diseases in children. Zdorov`e rebenka. 2013;(51):33-36. (in Russian).
Hackel M, Lascols C, Bouchillon S, Hilton B, Morgenstern D, Purdy J. Serotype prevalence and antibiotic resistance in Streptococcus pneumoniae clinical isolates among global populations. Vaccine. 2013 Oct 1;31(42):4881-7. doi: 10.1016/j.vaccine.2013.07.054.
Reinert RR. The antimicrobial resistance profile of Streptococcus pneumoniae. Clin Microbiol Infect. 2009 Apr;15 Suppl 3:7-11. doi: 10.1111/j.1469-0691.2009.02724.x.
Mayanskiy NA, Alyabeva NM, Lazareva AV, Katosova LK. Serotype Diversity and Antimicrobial Resistance of Streptococcus pneumoniae. Vestnik Rossiiskoi akademii meditsinskikh nauk. 2014;69(7-8):38-45. doi: 10.15690/vramn.v69i7-8.1108. (in Russian).
Reinert RR. Resistance phenotypes and multi-drug resistance in Streptococcus pneumoniae (PROTEKT years 1–3 [1999–2001]. J Chemother. 2004 Dec;16 Suppl 6:35-48. doi: 10.1080/1120009X.2004.11782401.
Zapun C, Contreras-Martel TV, Vernet T.. Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev. 2008 Mar;32(2):361-85. doi: 10.1111/j.1574-6976.2007.00095.x.
Cherazard R, Epstein M, Doan TL, Salim T, Bharti S, Smith MA. Antimicrobial resistant Streptococcus pneumoniae: prevalence, mechanisms, and clinical implications. Am J Ther. 2017 May;24(3):e361-e369. doi: 10.1097/MJT.0000000000000551.
Strachunskiy LS, Kozlov SN. Sovremennaya antibakterialnaya himioterapiya: rukovodstvo dlya vrachey [Modern antibacterial chemotherapy: a guide for doctors]. Moskow: Borges; 2002. 432 p. (in Russian).
Tristram S, Jacobs MR, Appelbaum PC. Antimicrobial resistance in Haemophilus influenzae. Clinical microbiology reviews. 2007;20(2):368-389. doi: 10.1128/CMR.00040-06.
Groot R, DzoliiccDanilovic G, Kligeren B, Goessens W, Neyens H. Antibiotic resistance in Haemophilus influenzae: mechanisms, clinical importance and consequencesfor therapy. Eur J Pediatr. 1991 Jun;150(8):534-46.
Zhukova EV. The current state of the problem of antibiotic resistance and epidemiological surveillance of the resistance of microorganisms to antibacterial drugs. Poliklinika. 2015;(2-2):44-47. (in Russian).
Pérez-Trallero E, Martín-Herrero JE, Mazón A, et al. Antimicrobial resistance among respiratory pathogens in Spain: latest data and changes over 11 years (1996-1997 to 2006-2007). Antimicrob Agents Chemother. 2010 Jul;54(7):2953-9. doi: 10.1128/AAC.01548-09.
Cherkasskіу. BL, editor. Chastnaya epidemiologiya: rukovodstvo dlya vrachey [Private Epidemiology: A Guide for Physicians]. Мoskow: Intersen; 2002. 16 - 24 pp. (in Russian).
Bae S, Lee J, Lee J, Kim E, Lee S, Yu J, Kang Y. Antimicrobial resistance in Haemophilus influenzae respiratory tract isolates in Korea: results of a nationwide acute respiratory infections surveillance. Antimicrob Agents Chemother. 2010 Jan;54(1):65-71. doi: 10.1128/AAC.00966-09.
Jean, SS, Hsueh PR, Lee WS, et al. Nationwide surveillance of antimicrobial resistance among Haemophilus influenzae and Streptococcus pneumoniae in intensive care units in Taiwan. Eur J Clin Microbiol Infect Dis. 2009 Aug;28(8):1013-7. doi: 10.1007/s10096-009-0727-3.
Zhang H, Li WH, Wang CQ, et al. CHINET 2007 surveillance of antimicrobial resistance in Haemophilus influenzae in China. Chinese Journal of Infection and Chemotherapy. 9(3):207-209. doi: 10.1007/978-3-540-93824-8_1460.
Bogdanovich TM, Stetsiuk OU, Krechikova OI, et al. Isolation, identification and antimicrobial susceptibility testing of Haemophilus influenza. Clinical Microbiology and Antimicrobial Chemotherapy. 2000;2 (2):93-109.
Volosovets AP, Krivopustov SP, Dzyuba OL. Cefodox (cefpodoxime proxetil): a three-year analysis of clinical use in pediatrics. Sovremennaya pediatriya. 2009;(4):34-38. (in Russian).
Lezhenko GO, Pashkova OE, Pantyushenko LI. Proving of decision of treatment tactics of acute sinusitis in children. 2012;(3):95-98. (in Ukrainian).
Lezhenko GO, Pashkova OE, Pantyushenko LI. Choice of Rational Antibiotic Therapy in Children with Bacterial Respiratory Diseases Under Increased Antibiotic Resistance Level. Zdorov`e rebenka. 2014;(6): 25-30. (in Ukrainian).
Lezhenko GO, Pashkova OE. The Substantiation for Rational Antibacterial Therapy of Bacterial Respiratory Diseases in Children. Zdorov`e rebenka. 2016;(70):33-38. doi: 10.22141/2224-0551.2.70.2016.73805. (in Ukrainian).