The effect on the availability of manganese and zinc ions for pathogenic bacteria

А.Е. Abaturov, Т.А. Kryuchko


Manganese and zinc play a role in the infectious process, wherein a change in the concentration of manganese and zinc can significantly impact the disease course. Bacterial pathogens utilize manganese ions as a protector that protects the organism from compounds of radicals generated by macroorganisms in infectious process. Therefore, a change in the level of supply of pathogenic bacteria with these microelements can impact the disease course. The macroorganism in the infectious process limits the availability of manganese for bacterial pathogens with the help of calprotectin, which can chelate Mn2+, Zn2+, competing with bacterial pathogens for these elements. Calprotectin is released at very high concentrations during the formation of neutrophilic extracellular traps, wherein calprotectin inhibits bacterial growth by sequestering zinc. However, calprotectin can promote the development of pneumonia caused by bacteria Streptococcus pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa. The effectiveness of the use of zinc preparations for various infectious dise­ases is widely studied, wherein the use of such preparations prevents the development of acute respiratory infections and contributes to milder course, including severe pneumonia in children.


pneumonia; manganese; zinc; pathogenic bacteria; zinc drugs


Achouiti A, Vogl T, Urban CF, et al. Myeloid-related protein-14 contributes to protective immunity in gram-negative pneumonia derived sepsis. PLoS Pathog. 2012;8(10):e1002987. doi: 10.1371/journal.ppat.1002987.

Achouiti A, Vogl T, Endeman H, et al. Myeloid-related protein-8/14 facilitates bacterial growth during pneumococcal pneumonia. Thorax. 2014 Nov;69(11):1034-42. doi: 10.1136/thoraxjnl-2014-205668.

AlMatar M, Makky EA, Var I, Koksal F. The Role of Nanoparticles in the Inhibition of Multidrug-resistant Bacteria and Biofilms. Curr Drug Deliv. 2018;15(4):470-484. doi: 10.2174/1567201815666171207163504.

Barnese K, Gralla EB, Valentine JS, Cabelli DE. Biologically relevant mechanism for catalytic superoxide removal by simple manganese compounds. Proc Natl Acad Sci U S A. 2012 May 1;109(18):6892-7. doi: 10.1073/pnas.1203051109.

Bayroodi E, Jalal R. Modulation of antibiotic resistance in Pseudomonas aeruginosa by ZnO nanoparticles. Iran J Microbiol. 2016 Apr;8(2):85-92.

Bhandari N, Bahl R, Taneja S, et al. Effect of routine zinc supplementation on pneumonia in children aged 6 months to 3 years: randomised controlled trial in an urban slum. BMJ. 2002 Jun 8;324(7350):1358.

Bhande RM, Khobragade CN, Mane RS, Bhande S. Enhanced synergism of antibiotics with zinc oxide nanoparticles against extended spectrum β-lactamase producers implicated in urinary tract infections. J Nanopart Res. 2013;15:1413-1426. doi: 10.1007/s11051-012-1413-4.

Bobat R, Coovadia H, Stephen C, et al. Safety and efficacy of zinc supplementation for children with HIV-1 infection in South Africa: a randomised double-blind placebo-controlled trial. Lancet. 2005 Nov 26;366(9500):1862-7. doi: 10.1016/S0140-6736(05)67756-2.

Brooks WA, Santosham M, Naheed A, et al. Effect of weekly zinc supplements on incidence of pneumonia and diarrhoea in children younger than 2 years in an urban, low-income population in Bangladesh: randomised controlled trial. Lancet. 2005 Sep 17-23;366(9490):999-1004. doi: 10.1016/S0140-6736(05)67109-7.

Capdevila DA, Wang J, Giedroc DP. Bacterial Strategies to Maintain Zinc Metallostasis at the Host-Pathogen Interface. J Biol Chem. 2016 Sep 30;291(40):20858-20868.

Chandrangsu P, Rensing C, Helmann JD. Metal homeostasis and resistance in bacteria. Nat Rev Microbiol. 2017 Jun;15(6):338-350. doi: 10.1038/nrmicro.2017.15.

Chen Z, Wang X, Yang F, et al. Molecular Insights into Hydrogen Peroxide-sensing Mechanism of the Metalloregulator MntR in Controlling Bacterial Resistance to Oxidative Stresses. J Biol Chem. 2017 Mar 31;292(13):5519-5531. doi: 10.1074/jbc.M116.764126.

Corbin BD, Seeley EH, Raab A, et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science. 2008 Feb 15;319(5865):962-5. doi: 10.1126/science.1152449.

Damo SM, Kehl-Fie TE, Sugitani N, et al. Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3841-6. doi: 10.1073/pnas.1220341110.

Dao DT, Anez-Bustillos L, Cho BS, Li Z, Puder M, Gura KM. Assessment of Micronutrient Status in Critically Ill Children: Challenges and Opportunities. Nutrients. 2017 Oct 28;9(11). pii: E1185. doi: 10.3390/nu9111185.

Elkhatib W, Noreddin A. In Vitro Antibiofilm Efficacies of Different Antibiotic Combinations with Zinc Sulfate against Pseudomonas aeruginosa Recovered from Hospitalized Patients with Urinary Tract Infection. Antibiotics (Basel). 2014 Feb 17;3(1):64-84. doi: 10.3390/antibiotics3010064.

Ghasemi F, Jalal R. Antimicrobial action of zinc oxide nanoparticles in combination with ciprofloxacin and ceftazidime against multidrug-resistant Acinetobacter baumannii. J Glob Antimicrob Resist. 2016 Sep;6:118-122. doi: 10.1016/j.jgar.2016.04.007.

Hemeg HA. Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine. 2017 Nov 10;12:8211-8225. doi: 10.2147/IJN.S132163.

Isaei E, Mansouri S, Mohammadi F, Taheritarigh S, Mohammadi Z. Novel Combinations of Synthesized ZnO NPs and Ceftazidime: Evaluation of their Activity against Standards and New Clinically Isolated Pseudomonas aeruginosa. Avicenna J Med Biotechnol. 2016 Oct-Dec;8(4):169-174.

Janaki AC, Sailatha E, Gunasekaran S. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Jun 5;144:17-22. doi: 10.1016/j.saa.2015.02.041.

Johnstone TC, Nolan EM. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans. 2015 Apr 14;44(14):6320-39. doi: 10.1039/c4dt03559c.

Juttukonda LJ, Berends ETM, Zackular JP, et al. Dietary Manganese Promotes Staphylococcal Infection of the Heart. Cell Host Microbe. 2017 Oct 11;22(4):531-542.e8. doi: 10.1016/j.chom.2017.08.009.

Karyadi E, West CE, Schultink W, et al. A double-blind, placebo-controlled study of vitamin A and zinc supplementation in persons with tuberculosis in Indonesia: effects on clinical response and nutritional status. Am J Clin Nutr. 2002 Apr;75(4):720-7.

Król A, Pomastowski P, Rafińska K, Railean-Plugaru V, Buszewski B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv Colloid Interface Sci. 2017 Nov;249:37-52. doi: 10.1016/j.cis.2017.07.033.

Kunkalekar RK, Prabhu MS, Naik MM, Salker AV. Silver-doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria. Colloids Surf B Biointerfaces. 2014 Jan 1;113:429-34. doi: 10.1016/j.colsurfb.2013.09.036.

Lassi ZS, Moin A, Bhutta ZA. Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database Syst Rev. 2016 Dec 4;12:CD005978. doi: 10.1002/14651858.CD005978.pub3.

Madhumitha G, Elango G, Roopan SM. Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. Appl Microbiol Biotechnol. 2016 Jan;100(2):571-81. doi: 10.1007/s00253-015-7108-x.

Mahalanabis D, Lahiri M, Paul D, et al. Randomized, double-blind, placebo-controlled clinical trial of the efficacy of treatment with zinc or vitamin A in infants and young children with severe acute lower respiratory infection. Am J Clin Nutr. 2004 Mar;79(3):430-6.

Malik A, Taneja DK, Devasenapathy N, Rajeshwari K. Zinc supplementation for prevention of acute respiratory infections in infants: a randomized controlled trial. Indian Pediatr. 2014 Oct;51(10):780-4.

Martinez-Estevez NS, Alvarez-Guevara AN, Rodriguez-Martinez CE. Effects of zinc supplementation in the prevention of respiratory tract infections and diarrheal disease in Colombian children: A 12-month randomised controlled trial. Allergol Immunopathol (Madr). 2016 Jul-Aug;44(4):368-75. doi: 10.1016/j.aller.2015.12.006.

McDevitt CA, Ogunniyi AD, Valkov E, et al. A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog. 2011 Nov;7(11):e1002357. doi: 10.1371/journal.ppat.1002357.

Merchant AT, Spatafora GA. A role for the DtxR family of metalloregulators in gram-positive pathogenesis. Mol Oral Microbiol. 2014 Feb;29(1):1-10. doi: 10.1111/omi.12039.

Palmer LD, Skaar EP. Transition Metals and Virulence in Bacteria. Annu Rev Genet. 2016 Nov 23;50:67-91. doi: 10.1146/annurev-genet-120215-035146.

Parker DL, Lee SW, Geszvain K, et al. Pyoverdine synthesis by the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1. Front Microbiol. 2014 May 7;5:202. doi: 10.3389/fmicb.2014.00202.

Poole K. At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic Activity and Resistance. Trends Microbiol. 2017 Oct;25(10):820-832. doi: 10.1016/j.tim.2017.04.010.

Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes. Molecules. 2016 Jun 27;21(7). pii: E836. doi: 10.3390/molecules21070836.

Sakulchit T, Goldman RD. Zinc supplementation for pediatric pneumonia. Can Fam Physician. 2017 Oct;63(10):763-765.

Sazawal S, Black RE, Jalla S, Mazumdar S, Sinha A, Bhan MK. Zinc supplementation reduces the incidence of acute lower respiratory infections in infants and preschool children: a double-blind, controlled trial. Pediatrics. 1998 Jul;102(1 Pt 1):1-5.

Shah UH, Abu-Shaheen AK, Malik MA, Alam S, Riaz M, Al-Tannir MA. The efficacy of zinc supplementation in young children with acute lower respiratory infections: a randomized double-blind controlled trial. Clin Nutr. 2013 Apr;32(2):193-9. doi: 10.1016/j.clnu.2012.08.018.

Thati V, Roy AS, Ambika Prasad MVN, et al. Nanostructured zinc oxide enhances the activity of antibiotics against Staphylococcus aureus. J. Biosci. Technol. 2010;1:64-69.

Thatoi P, Kerry RG, Gouda S, et al. Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J Photochem Photobiol B. 2016 Oct;163:311-8. doi: 10.1016/j.jphotobiol.2016.07.029.

Vimbela GV, Ngo SM, Fraze C, et al. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017 May 24;12:3941-3965. doi: 10.2147/IJN.S134526.

Wakeman CA, Moore JL, Noto MJ, et al. The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction. Nat Commun. 2016 Jun 15;7:11951. doi: 10.1038/ncomms11951.

Wątły J, Potocki S, Rowińska-Żyrek M. Zinc Homeostasis at the Bacteria/Host Interface-From Coordination Chemistry to Nutritional Immunity. Chemistry. 2016 Nov 2;22(45):15992-16010. doi: 10.1002/chem.201602376.

Zogzas CE, Mukhopadhyay S. Inherited Disorders of Manganese Metabolism. Adv Neurobiol. 2017;18:35-49. doi: 10.1007/978-3-319-60189-2_3.

Copyright (c) 2020 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта