Antibacterial therapy of community-acquired pneumonia in children

A.E. Abaturov, A.A. Nikulina, E.L. Krivusha, V.I. Ivashina


The review of the literature presents the characteristics of bacteriostatic, anti-biofilm, anti-inflammatory action of azithromycin. The clinical efficacy of azithromycin is demonstrated in acute respiratory infections caused by bacterial pathogens. Considering the antibacterial spectrum of action, azithromycin can be considered the drug of choice in the treatment of children with uncomplicated community-acquired pneumonias, especially those caused by intracellular bacterial agents.


children; inflammatory diseases of the respiratory tract; azithromycin


Abaturov AE, Kryuchko TA. Current and future etiologic therapy of bacterial pneumonia. 1. Antibiotic therapy for community-acquired pneumonia. Zdorovʹe rebenka. 2017;3(12):382-389. doi. 10.22141/2224-0551.12.3.2017.104231. (in Russian).

Gratsianskaya AN. Antibiotics in pediatric practice: azithromycin. Trudny patient. 2014;12(1-2):25-28. (in Russian).

Duka ED, Ilchenko SI, Korenyuk ES, Degtiar SP, Fomenkova NV. Current Issues of Antibiotic Use for Acute Infections Treatment in Children. Zdorovʹe rebenka. 2015;(68):9-12. doi: 10.22141/2224-0551.8.68.2015.75133. (in Russian).

Zaplatnikov AL, Girina АА, Cheburkin AA, Zelinskaya DI. Community-acquired pneumonia in children: diagnosis and etiotropic treatment. Vopr prakt pediatr (Clinical Practice in Pediatrics). 2016;11(6):52-58. (in Russian).

Zupanets IA, Bezuglaya NP, Libina VV. Assessment of the interchangeability of Azimed - bioequivalence is proved! Liky Ukrai'ny. 2013;1(167):80-83. (in Russian).

Karoli NA, Rebrov AP. Azithromycin in the treatment of respiratory infections. Spravochnik poliklinicheskogo vracha. 2017;(3):49-53. (in Russian).

Krivopalov AA, Shervashidze SV, Shatalov VA. Azithromycin in therapy of bacterial rhinosinusites. Meditsinskiy Sovet. 2017;(11):54-57. doi: 10.21518/2079-701X-2017-11-54-57. (in Russian).

Krivopustov SP. Azithromycin in pediatrics: 20 years of successful clinical application. Sovremennaya pediatriya. 2008;(22):52. (in Russian).

Sazhnova SI, Karoli NA, Rebrov AP. Azithromycin: modern place of the drug in therapy of lower respiratory tracts infections. Medical Council. 2017;(18):90-94. doi: 10.21518/2079-701X-2017-18-90-94. (in Russian).

Ambroggio L, Test M, Metlay JP, et al. Beta-lactam versus beta- lactam/macrolide therapy in pediatric outpatient pneumonia. Pediatr Pulmonol. 2016 May;51(5):541-8. doi: 10.1002/ppul.23312.

Bakheit AH, Al-Hadiya BM, Abd-Elgalil AA. Azithromycin. Profiles Drug Subst Excip Relat Methodol. 2014;39:1-40. doi: 10.1016/B978-0-12-800173-8.00001-5.

Ballow CH, Amsden GW. Azithromycin: the first azalide antibiotic. Ann Pharmacother. 1992 Oct;26(10):1253-61. doi: 10.1177/106002809202601014.

Blyth CC, Gerber JS. Macrolides in Children With Community-Acquired Pneumonia: Panacea or Placebo? J Pediatric Infect Dis Soc. 2018 Feb 19;7(1):71-77. doi: 10.1093/jpids/pix083.

Cramer CL, Patterson A, Alchakaki A, Soubani AO. Immunomodulatory indications of azithromycin in respiratory disease: a concise review for the clinician. Postgrad Med. 2017 Jun;129(5):493-499. doi: 10.1080/00325481.2017.1285677.

Darby JB, Singh A, Quinonez R. Management of Complicated Pneumonia in Childhood: A Review of Recent Literature. Rev Recent Clin Trials. 2017;12(4):253-259. doi: 10.2174/1574887112666170816144110.

Ding W, Zhou Y, Qu Q, et al. Azithromycin Inhibits Biofilm Formation by Staphylococcus xylosus and Affects Histidine Biosynthesis Pathway. Front Pharmacol. 2018 Jul 10;9:740. doi: 10.3389/fphar.2018.00740.

Donà D, Luise D, Da Dalt L, Giaquinto C. Treatment of Community-Acquired Pneumonia: Are All Countries Treating Children in the Same Way? A Literature Review. Int J Pediatr. 2017;2017:4239268. doi: 10.1155/2017/4239268.

Donde S, Mishra A, Kochhar P, et al. Azithromycin in acute bacterial upper respiratory tract infections: an Indian non-interventional study. Indian J Otolaryngol Head Neck Surg. 2014 Jan;66(Suppl 1):225-30. doi: 10.1007/s12070-011-0437-x.

Gardiner SJ, Gavranich JB, Chang AB. Antibiotics for community-acquired lower respiratory tract infections secondary to Mycoplasma pneumoniae in children. Cochrane Database Syst Rev. 2015 Jan 8;1:CD004875. doi: 10.1002/14651858.CD004875.pub5.

GBD 2015 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016 Oct 8;388(10053):1603-1658. doi: 10.1016/S0140-6736(16)31460-X.

Gielen V, Johnston SL, Edwards MR. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J. 2010 Sep;36(3):646-54. doi: 10.1183/09031936.00095809.

Harris M, Clark J, Coote N, et al. British Thoracic Society guidelines for the management of community acquired pneumonia in children: update 2011. Thorax. 2011 Oct;66 Suppl 2:ii1-23. doi: 10.1136/thoraxjnl-2011-200598.

Hodge S, Tran HB, Hamon R, et al. Nonantibiotic macrolides restore airway macrophage phagocytic function with potential anti-inflammatory effects in chronic lung diseases. Am J Physiol Lung Cell Mol Physiol. 2017 May 1;312(5):L678-L687. doi: 10.1152/ajplung.00518.2016.

Hoffmann N, Lee B, Hentzer M, et al. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice. Antimicrob Agents Chemother. 2007 Oct; 51(10): 3677-87.

Imperi F, Leoni L, Visca P. Antivirulence activity of azithromycin in Pseudomonas aeruginosa. Front Microbiol. 2014 Apr 22;5:178. doi: 10.3389/fmicb.2014.00178.

Kagebeck P, Nikiforova V, Brunken L, et al. Lysosomotropic cationic amphiphilic drugs inhibit adipocyte differentiation in 3T3-L1K cells via accumulation in cells and phospholipid membranes, and inhibition of autophagy. Eur J Pharmacol. 2018 Jun 15;829:44-53. doi: 10.1016/j.ejphar.2018.04.004.

Kagkelaris KA, Makri OE, Georgakopoulos CD, Panayiotakopoulos GD. An eye for azithromycin: review of the literature. Ther Adv Ophthalmol. 2018 Jul 30;10:2515841418783622. doi: 10.1177/2515841418783622.

Kronman MP, Hersh AL, Feng R, Huang YS, Lee GE, Shah SS. Ambulatory visit rates and antibiotic prescribing for children with pneumonia, 1994-2007. Pediatrics. 2011 Mar;127(3):411-8. doi: 10.1542/peds.2010-2008.

Kwong CG, Bacharier LB. Microbes and the Role of Antibiotic Treatment for Wheezy Lower Respiratory Tract Illnesses in Preschool Children. Curr Allergy Asthma Rep. 2017 May;17(5):34. doi: 10.1007/s11882-017-0701-6.

Kyu HH, Pinho C, Wagner JA, et al. Global and National Burden of Diseases and Injuries Among Children and Adolescents Between 1990 and 2013: Findings From the Global Burden of Disease 2013 Study. JAMA Pediatr. 2016 Mar;170(3):267-87. doi: 10.1001/jamapediatrics.2015.4276.

Laopaiboon M, Panpanich R, Swa Mya K. Azithromycin for acute lower respiratory tract infections. Cochrane Database Syst Rev. 2015 Mar 8;(3):CD001954. doi: 10.1002/14651858.CD001954.pub4.

le Roux DM, Zar HJ. Community-acquired pneumonia in children - a changing spectrum of disease. Pediatr Radiol. 2017 Oct;47(11):1392-1398. doi: 10.1007/s00247-017-3827-8.

Leung AK, Wong AHC, Hon KL. Community-Acquired Pneumonia in Children. Recent Pat Inflamm Allergy Drug Discov. 2018 Jun 21. doi: 10.2174/1872213X12666180621163821.

Lim WS, Smith DL, Wise MP, Welham SA; British Thoracic Society. British Thoracic Society community acquired pneumonia guideline and the NICE pneumonia guideline: how they fit together. Thorax. 2015 Jul;70(7):698-700. doi: 10.1136/thoraxjnl-2015-206881.

Lin SJ, Lee WJ, Liang YW, Yan DC, Cheng PJ, Kuo ML. Azithromycin inhibits IL-5 production of T helper type 2 cells from asthmatic children. Int Arch Allergy Immunol. 2011;156(2):179-86. doi: 10.1159/000322872.

Lin SJ, Yan DC, Lee WI, Kuo ML, Hsiao HS, Lee PY. Effect of azithromycin on natural killer cell function. Int Immunopharmacol. 2012 May;13(1):8-14. doi: 10.1016/j.intimp.2012.02.013.

Liu S, Zheng Y, Wu X, et al. Early target attainment of azithromycin therapy in children with lower respiratory tract infections. J Antimicrob Chemother. 2018 Jul 27. doi: 10.1093/jac/dky273.

Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G4, Verleden GM5, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014 Aug;143(2):225-45. doi: 10.1016/j.pharmthera.2014.03.003.

Rodrigues CMC. Challenges of Empirical Antibiotic Therapy for Community-Acquired Pneumonia in Children. Curr Ther Res Clin Exp. 2017 Jan 16;84:e7-e11. doi: 10.1016/j.curtheres.2017.01.002.

Rodrigues CMC, Groves H. Community-Acquired Pneumonia in Children: the Challenges of Microbiological Diagnosis. J Clin Microbiol. 2018 Feb 22;56(3). pii: e01318-17. doi: 10.1128/JCM.01318-17.

Segal LN, Clemente JC, Wu BG, et al. Randomised, double-blind, placebo-controlled trial with azithromycin selects for anti-inflammatory microbial metabolites in the emphysematous lung. Thorax. 2017 Jan;72(1):13-22. doi: 10.1136/thoraxjnl-2016-208599.

Shah SS, Test M, Sheffler-Collins S, Weiss AK, Hall M. Macrolide therapy and outcomes in a multicenter cohort of children hospitalized with Mycoplasma pneumoniae pneumonia. J Hosp Med. 2012 Apr;7(4):311-7. doi: 10.1002/jhm.1904.

Singh S, Kubler A, Singh UK, et al. Antimycobacterial drugs modulate immunopathogenic matrix metalloproteinases in a cellular model of pulmonary tuberculosis. Antimicrob Agents Chemother. 2014 Aug;58(8):4657-65. doi: 10.1128/AAC.02141-13.

Sondergaard MJ, Friis MB, Hansen DS, Jørgensen IM. Clinical manifestations in infants and children with Mycoplasma pneumoniae infection. PLoS One. 2018 Apr 26;13(4):e0195288. doi: 10.1371/journal.pone.0195288.

Stamatiou R, Paraskeva E, Boukas K, et al. Azithromycin has an antiproliferative and autophagic effect on airway smooth muscle cells. Eur Respir J. 2009 Sep;34(3):721-30. doi: 10.1183/09031936.00089407.

Tan H, Zhang L, Weng Y, et al. PA3297 Counteracts Antimicrobial Effects of Azithromycin in Pseudomonas aeruginosa. Front Microbiol. 2016 Mar 16;7:317. doi: 10.3389/fmicb.2016.00317.

Tsai WC, Hershenson MB, Zhou Y, Sajjan U. Azithromycin increases survival and reduces lung inflammation in cystic fibrosis mice. Inflamm Res. 2009 Aug;58(8):491-501. doi: 10.1007/s00011-009-0015-9.

Vanaudenaerde BM, Wuyts WA, Geudens N, et al. Macrolides inhibit IL17-induced IL8 and 8-isoprostane release from human airway smooth muscle cells. Am J Transplant. 2007 Jan;7(1):76-82. doi: 10.1111/j.1600-6143.2006.01586.x.

Webley WC, Hahn DL. Infection-mediated asthma: etiology, mechanisms and treatment options, with focus on Chlamydia pneumoniae and macrolides. Respir Res. 2017 May 19;18(1):98. doi: 10.1186/s12931-017-0584-z.

World Health Organization. Integrated management of childhood illness: chart booklet. Geneva: World Health Organization; 2014. 80 р.

Yamaryo T, Oishi K, Yoshimine H, Tsuchihashi Y, Matsushima K, Nagatake T. Fourteen-member macrolides promote the phosphatidylserine receptor-dependent phagocytosis of apoptotic neutrophils by alveolar macrophages. Antimicrob Agents Chemother. 2003 Jan;47(1):48-53. doi:10.1128/AAC.47.1.48-53.2003.

Zimmermann GS, Neurohr C, Villena-Hermoza H, Hatz R, Behr J. Anti-inflammatory effects of antibacterials on human Bronchial epithelial cells. Respir Res. 2009 Sep 29;10:89. doi: 10.1186/1465-9921-10-89.

Copyright (c) 2020 A.E. Abaturov, A.A. Nikulina, E.L. Krivusha, V.I. Ivashina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта