Drug limitation of the availability of iron ions for pathogenic bacteria (part 1)

А.Е. Abaturov, Т.А. Kryuchko

Abstract


Most bacteria are microorganisms that require iron to support their vital functions. Iron is the most important macroelement of microorganisms acting as an electron carrier and cofactor of DNA and RNA synthesis. Most bacteria absorb iron with siderophores. Some bacteria produce hemophores (similar to siderophores) intended for obtaining iron from exogenous heme (iron protoporphyrin). Also, some representatives of the bacterial world express receptors for transferrin and lactoferrin, which allows them to utilize iron associated with these proteins. It has been established that iron excess in macroorganism is associated with the chronic course of infectious process, since high levels of iron ions contribute to the formation of biofilms of pathogenic bacteria. Violation of the bacterial supply with iron due to reduced level of available iron ions; inhibition of bacterial siderophore synthesis; use of drugs containing side­rophores conjugated with antibiotics; use of drugs containing gallium, which competitively replaces iron, can cause the death of pathogenic microorganisms and contribute to the recovery. Numerous drugs capturing iron ions are developed on the basis of siderophores. Iron chelating drugs in certain clinical cases can play a key role in determining the effectiveness of antimicrobial therapy.


Keywords


pneumonia; iron; pathogenic bacteria; iron supply management

References


Abaturov AE. Importance of metal-binding proteins in nonspecific protection of the respiratory tract: Lactoferrin. Zdorov`e rebenka. 2009;(19):125-128. In Russian.

Aguado-Santacruz GA, Moreno-Gómez BA, Jiménez-Francisco BB, García-Moya E, Preciado-Ortiz RE. Impact of the microbial siderophores and phytosiderophores on the iron assimilation by plants: a synthesis. Rev Fitotec Mex. 2012;35(1):9-21.

Ahmed E, Holmström SJ. Siderophores in environmental research: roles and applications. Microb Biotechnol. 2014 May;7(3):196-208. doi: 10.1111/1751-7915.12117.

Ammons MC, Copié V. Mini-review: Lactoferrin: a bioinspired, anti-biofilm therapeutic. Biofouling. 2013;29(4):443-55. doi: 10.1080/08927014.2013.773317.

Banin E, Vasil ML, Greenberg EP. Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci USA. 2005 Aug 2;102(31):11076-81.

Boukhalfa H, Lack J, Reilly SD, Hersman L, Neu MP. Siderophore production and facilitated uptake of iron and plutonium in P. putida. AIP Conf Proc. 2003;673:343. doi: 10.1063/1.1594658.

Brophy MB, Nakashige TG, Gaillard A, Nolan EM. Contributions of the S100A9 C-terminal tail to high-affinity Mn(II) chelation by the host-defense protein human calprotectin. J Am Chem Soc. 2013 Nov 27;135(47):17804-17. doi: 10.1021/ja407147d.

Brown LR, Caulkins RC, Schartel TE, et al. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae. Front Cell Infect Microbiol. 2017 Jun 7;7:233. doi: 10.3389/fcimb.2017.00233.

Bruhn KW, Spellberg B. Transferrin-mediated iron sequestration as a novel therapy for bacterial and fungal infections. Curr Opin Microbiol. 2015 Oct;27:57-61. doi: 10.1016/j.mib.2015.07.005.

Capdevila DA, Edmonds KA, Giedroc DP. Metallochaperones and metalloregulation in bacteria. Essays Biochem. 2017 May 9;61(2):177-200. doi: 10.1042/EBC20160076.

Chen K, Chai L, Li H, et al Effect of bovine lactoferrin from iron-fortified formulas on diarrhea and respiratory tract infections of weaned infants in a randomized controlled trial. Nutrition. 2016 Feb;32(2):222-7. doi: 10.1016/j.nut.2015.08.010.

Chitambar CR. The therapeutic potential of iron-targeting gallium compounds in human disease: From basic research to clinical application. Pharmacol Res. 2017 Jan;115:56-64. doi: 10.1016/j.phrs.2016.11.009.

Chu BC, Garcia-Herrero A, Johanson TH, et al. Siderophore uptake in bacteria and the battle for iron with the host; a bird's eye view. Biometals. 2010 Aug;23(4):601-11. doi: 10.1007/s10534-010-9361-x.

Cornelis P. Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol. 2010 May;86(6):1637-45. doi: 10.1007/s00253-010-2550-2.

Deicke M, Mohr JF, Bellenger JP, Wichard T. Metallophore mapping in complex matrices by metal isotope coded profiling of organic ligands. Analyst. 2014 Dec 7;139(23):6096-9. doi: 10.1039/c4an01461h.

Drago-Serrano ME, Campos-Rodríguez R, Carrero JC, de la Garza M. Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections. Int J Mol Sci. 2017 Mar 1;18(3). pii: E501. doi: 10.3390/ijms18030501.

Ferreira D, Seca AM, C G A D, Silva AM. Targeting human pathogenic bacteria by siderophores: A proteomics review. J Proteomics. 2016 Aug 11;145:153-66. doi: 10.1016/j.jprot.2016.04.006.

Francis J, Macturk HM, Madinaveitia J, Snow GA. Mycobactin, a growth factor for Mycobacterium johnei. I. Isolation from Mycobacterium phlei. Biochem J. 1953 Nov;55(4):596-607.

Fu D, Finney L. Metalloproteomics: challenges and prospective for clinical research applications. Expert Rev Proteomics. 2014 Feb;11(1):13-9. doi: 10.1586/14789450.2014.876365.

Ganz T. Iron and infection. Int J Hematol. 2018 Jan;107(1):7-15. doi: 10.1007/s12185-017-2366-2.

Ge R, Sun X. Iron acquisition and regulation systems in Streptococcus species. Metallomics. 2014 May;6(5):996-1003. doi: 10.1039/c4mt00011k.

González-Chávez SA, Arévalo-Gallegos S, Rascón-Cruz Q. Lactoferrin: structure, function and applications. Int J Antimicrob Agents. 2009 Apr;33(4):301.e1-8. doi: 10.1016/j.ijantimicag.2008.07.020.

Górska A, Sloderbach A, Marszałł MP. Siderophore-drug complexes: potential medicinal applications of the 'Trojan horse' strategy. Trends Pharmacol Sci. 2014 Sep;35(9):442-9. doi: 10.1016/j.tips.2014.06.007.

Guillén C, McInnes IB, Vaughan DM et al. Enhanced Th1 response to Staphylococcus aureus infection in human lactoferrin-transgenic mice. J Immunol. 2002 Apr 15;168(8):3950-7.

Holden VI, Bachman MA. Diverging roles of bacterial siderophores during infection. Metallomics. 2015 Jun;7(6):986-95. doi: 10.1039/c4mt00333k.

Iglesias-Figueroa B, Valdiviezo-Godina N, Siqueiros-Cendón T, Sinagawa-García S, Arévalo-Gallegos S, Rascón-Cruz Q. High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity. Int J Mol Sci. 2016 Jun 9;17(6). pii: E902. doi: 10.3390/ijms17060902.

Johnstone TC, Nolan EM. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans. 2015 Apr 14;44(14):6320-39. doi: 10.1039/c4dt03559c.

Jung M, Mertens C, Bauer R, Rehwald C, Brüne B. Lipocalin-2 and iron trafficking in the tumor microenvironment. Pharmacol Res. 2017 Jun;120:146-156. doi: 10.1016/j.phrs.2017.03.018.

Kim CM, Shin SH. Effect of iron-chelator deferiprone on the in vitro growth of staphylococci. J Korean Med Sci. 2009 Apr;24(2):289-95. doi: 10.3346/jkms.2009.24.2.289.

Kontoghiorghes GJ, Kolnagou A, Skiada A, Petrikkos G. The role of iron and chelators on infections in iron overload and non iron loaded conditions: prospects for the design of new antimicrobial therapies. Hemoglobin. 2010 Jun;34(3):227-39. doi: 10.3109/03630269.2010.483662.

Kruzel ML, Zimecki M, Actor JK. Lactoferrin in a Context of Inflammation-Induced Pathology. Front Immunol. 2017 Nov 6;8:1438. doi: 10.3389/fimmu.2017.01438.

Lhospice S, Gomez NO, Ouerdane L, et al. Pseudomonas aeruginosa zinc uptake in chelating environment is primarily mediated by the metallophore pseudopaline. Sci Rep. 2017 Dec 7;7(1):17132. doi: 10.1038/s41598-017-16765-9.

Li XJ, Liu DP, Chen HL, et al Lactoferrin protects against lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol. 2012 Feb;12(2):460-4. doi: 10.1016/j.intimp.2012.01.001.

McFarlane JS, Lamb AL. Biosynthesis of an Opine Metallophore by Pseudomonas aeruginosa. Biochemistry. 2017 Nov 14;56(45):5967-5971. doi: 10.1021/acs.biochem.7b00804.

Mobarra N, Shanaki M, Ehteram H, et al. A Review on Iron Chelators in Treatment of Iron Overload Syndromes. Int J Hematol Oncol Stem Cell Res. 2016 Oct 1;10(4):239-247.

Nurchi VM, Crisponi G, Lachowicz JI, Medici S, Peana M, Zoroddu MA. Chemical features of in use and in progress chelators for iron overload. J Trace Elem Med Biol. 2016 Dec;38:10-18. doi: 10.1016/j.jtemb.2016.05.010.

Pan Y, Wan J, Roginski H, et al. Comparison of the effects of acylation and amidation on the antimicrobial and antiviral properties of lactoferrin. Lett Appl Microbiol. 2007 Mar;44(3):229-34. doi: 10.1111/j.1472-765X.2006.02081.x.

Reinhart AA. Oglesby-Sherrouse A.G. Regulation of Pseudomonas aeruginosa Virulence by Distinct Iron Sources. Genes (Basel). 2016 Dec 14;7(12). pii: E126. Review. doi: 10.3390/genes7120126.

Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis. Int J Mol Sci. 2017 Sep 15;18(9). pii: E1985. doi: 10.3390/ijms18091985.

Russo TA, Shon AS, Beanan JM, et al. Hypervirulent K. pneumoniae secretes more and more active iron-acquisition molecules than "classical" K. pneumoniae thereby enhancing its virulence. PLoS One. 2011;6(10):e26734. doi: 10.1371/journal.pone.0026734.

Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P. Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res Int. 2016 Mar;23(5):3984-99. doi: 10.1007/s11356-015-4294-0.

Sheldon JR, Laakso HA, Heinrichs DE. Iron Acquisition Strategies of Bacterial Pathogens. Microbiol Spectr. 2016 Apr;4(2). doi: 10.1128/microbiolspec.VMBF-0010-2015.

Sia AK, Allred BE, Raymond KN. Siderocalins: Siderophore binding proteins evolved for primary pathogen host defense. Curr Opin Chem Biol. 2013 Apr;17(2):150-7. doi: 10.1016/j.cbpa.2012.11.014.

Smith DJ, Lamont IL, Anderson GJ, Reid DW. Targeting iron uptake to control Pseudomonas aeruginosa infections in cystic fibrosis. Eur Respir J. 2013 Dec;42(6):1723-36. doi: 10.1183/09031936.00124012.

Soares MP, Weiss G. The Iron age of host-microbe interactions. EMBO Rep. 2015 Nov;16(11):1482-500. doi: 10.15252/embr.201540558.

Thompson MG, Corey BW, Si Y, Craft DW, Zurawski DV. Antibacterial activities of iron chelators against common nosocomial pathogens. Antimicrob Agents Chemother. 2012 Oct;56(10):5419-21. doi: 10.1128/AAC.01197-12.

Troxell B, Yang XF. Metal-dependent gene regulation in the causative agent of Lyme disease. Front Cell Infect Microbiol. 2013 Nov 15;3:79. doi: 10.3389/fcimb.2013.00079.

Valenti P, Catizone A, Pantanella F et al. Lactoferrin decreases inflammatory response by cystic fibrosis bronchial cells invaded with Burkholderia cenocepacia iron-modulated biofilm. Int J Immunopathol Pharmacol. 2011 Oct-Dec;24(4):1057-68. doi: 10.1177/039463201102400423.

Wilson BR, Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Siderophores in Iron Metabolism: From Mechanism to Therapy Potential. Trends Mol Med. 2016 Dec;22(12):1077-1090. doi: 10.1016/j.molmed.2016.10.005.

Zheng T, Nolan EM. Siderophore-based detection of Fe(III) and microbial pathogens. Metallomics. 2012 Aug;4(9):866-80. doi: 10.1039/c2mt20082a.




DOI: https://doi.org/10.22141/2224-0551.13.4.2018.137030

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2018

 

   Seo анализ сайта