Predicting the development of acute bacterial bronchitis in young children

G.O. Lezhenko, O.E. Pashkova, H.V. Kraynya


Seventy four young children with acute bronchitis (34 — with viral bronchitis and 40 with bacterial bronchitis) were examined using Acute Bronchitis Severity Score, with a bacteriological study of nasopharyngeal aspirate and determination of 25-hydroxyvitamin D (25(OH)D), vitamin D-binding protein, human bactericidal/permeability-increasing protein, catelicidin LL-37, β1-defensin, lactoferrin levels. The influence of various factors on the development of bacterial bronchitis was evaluated with the help of factorial and cluster analysis. It was found that 6 factors were of the greatest importance: the vitamin D supplementation, anemia factor, iatrogenic factor, inflammation factor, immune factor and maternal factor. To develop a prognostic mathematical model of acute bacterial bronchitis occurrence in young children, we used the equations of logistic regression, which included 9 predictors (the day of hospitalization from the onset of the disease, the day of administration of antibiotic therapy from the onset of the disease, the vitamin D and lactoferrin content in the blood serum, the preventive use of vitamin D, the level of hemoglobin and leukocytes in peripheral blood, acute respiratory infections mother have suffered during pregnancy, score for the assessment of the severity of the disease). The method of genetic algorithm was used to select 4 most significant factors: the day of hospitalization from the onset of disease, the day of administration of antibacterial therapy from the onset of disease, the content of vitamin D and lactoferrin in the blood serum. A decrease in the number of factors from 9 to 4 did not lead to a significant change in the predictive qualities of the model, as evidenced by the area under the ROC curve of the logistic regression equation and the evaluation of the discriminating ability of the model with the Gini coefficient. The sensitivity of the model was 88.9 %, specificity — 78.9 %. The analysis confirmed that the state of vitamin D supplementation, early hospitalization, irrational use of antibiotic therapy, immune disorders and the nature of the course of antenatal period made the priority contribution to the development of acute bacterial bronchitis in young children. The detected risk factors and the results of prognostic modeling should be used to identify children, who are at high risk for the development of acute bronchitis of bacterial origin.


acute bacterial bronchitis; young children; antimicrobial peptides; mathematical prediction


Bezerra PG, Britto MC, Correia JB, et al. Viral and atypical bacterial detection in acute respiratory infection in children under five years. PLoS One. 2011 Apr 18;6(4):e18928. doi: 10.1371/journal.pone.0018928.

Peng D, Zhao D, Liu J, et al. Multipathogen infections in hospitalized children with acute respiratory infections. Virol J. 2009 Sep 29;6:155. doi: 10.1186/1743-422X-6-155.

Simoes EA. Environmental and demographic risk factors for respiratory syncytial virus lower respiratory tract disease. J Pediatr. 2003 Nov;143(5 Suppl):S118-26. doi: 10.1067/S0022-3476(03)00511-0.

Peat JK, Keena V, Harakeh Z, Marks G. Parental smoking and respiratory tract infections in children. Paediatr Respir Rev. 2001 Sep;2(3):207-13. doi: 10.1053/prrv.2001.0142.

Regamey N, Kaiser L, Roiha H, et al. Viral etiology of acute respiratory infections with cough in infancy: a community-based birth cohort study. Pediatr Infect Dis J. 2008 Feb;27(2):100-5. doi: 10.1097/INF.0b013e31815922c8.

Heikkinen T. Respiratory viruses and children. J Infect. 2016 Jul 5;72 Suppl:S29-33. doi: 10.1016/j.jinf.2016.04.019.

Hishiki H, Ishiwada N, Fukasawa C, et al. Incidence of bacterial coinfection with respiratory syncytial virus bronchopulmonary infection in pediatric inpatients. J Infect Chemother. 2011 Feb;17(1):87-90. doi: 10.1007/s10156-010-0097-x.

Thorburn K, Harigopal S, Reddy V, Taylor N, van Saene HK. High incidence of pulmonary bacterial co-infection in children with severe respiratory syncytial virus (RSV) bronchiolitis. Thorax. 2006 Jul;61(7):611-5. doi: 10.1136/thx.2005.048397.

Ministry of Нealth of Ukraine. Order № 18 dated January 13, 2005. On the approval of protocols for the provision of medical assistance to children in the specialty Children's Pulmonology. Available from: Accessed: January 13, 2005. (in Ukrainian).

Mwachari C, Nduba V, Nguti R, Park DR, Sanguli L, Cohen CR. Validation of a new clinical scoring system for acute bronchitis. Int J Tuberc Lung Dis. 2007 Nov;11(11):1253-9.

Tikhomirov NP, Tikhomirova TN, Ushmaev OS. Metody ekonometriki i mnogomernogo statisticheskogo analiza: uchebnik [Methods of econometrics and multivariate statistical analysis: a textbook]. Moscow: Ekonomika; 2011. 647 p. (in Russian).

Lyakh YuE, Gurianov VG. Mathematic modeling for classification problems in biomedicine. Ukrainian journal of telemedicine and medical telematics. 2012;10(2):69-76. (in Ukrainian).

Petri A, Sebin K, authors; Leonov VP, editor. Nagliadnaia meditsinskaia statistika: uchebnoe posobie [Visual statistics in medicine: tutorial]. Moscow: GEOTAR-Media; 2009. 168 p. (in Russian).

Sorokin AS. On the question of validation logistic regression model in credit scoring. Naukovedenie. 2014;(2): 173EVN214. (in Russian).

Meize E, Voronenko DI, editors. Rukovodstvo po kreditnomu skoringu [Guide to credit scoring]. Minsk: Grevtsov Publisher; 2008. 464 p. (in Russian).

Nairz M, Haschka D, Demetz E, Weiss G. Iron at the interface of immunity and infection. Front Pharmacol. 2014 Jul 16;5:152. doi: 10.3389/fphar.2014.00152.

Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005 Mar 10;352(10):1011-23. doi: 10.1056/NEJMra041809.

Nemeth E, Ganz T. Anemia of inflammation. Hematol Oncol Clin North Am. 2014 Aug;28(4):671-81, vi. doi: 10.1016/j.hoc.2014.04.005.

Raina MacIntyre C, Chughtai AA, Zhang Y, et al. Viral and bacterial upper respiratory tract infection in hospital health care workers over time and association with symptoms. BMC Infect Dis. 2017 Aug 9;17(1):553. doi: 10.1186/s12879-017-2649-5.

Kumar A, Ellis P, Arabi Y, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009 Nov;136(5):1237-1248. doi: 10.1378/chest.09-0087.

Chung A, Perera R, Brueggemann AB, et al. Effect of antibiotic prescribing on antibiotic resistance in individual children in primary care: prospective cohort study. BMJ. 2007 Sep 1;335(7617):429. doi: 10.1136/bmj.39274.647465.BE.

Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ. 2010 May 18;340:c2096. doi: 10.1136/bmj.c2096.

Benguigui Y. Acute respiratory infections control in the context of the IMCI strategy in the Americas. Revista Brasileira de Saúde Materno Infantil. 2003; 3(1):25-26. doi: 10.1590/S1519-38292003000100005. 

Arroll B, Kenealy T, Falloon K. Are antibiotics indicated as an initial treatment for patients with acute upper respiratory tract infections? N Z Med J. 2008 Oct 17;121(1284):64-70.

Autret-Leca E, Giraudeau B, Ployet MJ, Jonville-Béra AP. Amoxicillin/clavulanic acid is ineffective at preventing otitis media in children with presumed viral upper respiratory infection: a randomized, double-blind equivalence, placebo-controlled trial. Br J Clin Pharmacol. 2002 Dec;54(6):652-6.

Novikov DK. Antiviral immunity. International journal of immunopathology, allergology, infectology. 2002;(1):6-16. (in Russian).

Bao Y, Liu X, Han Ch, et al. Identification of IFN-gamma-producing innate B cells. Cell Res. 2014 Feb;24(2):161-76. doi: 10.1038/cr.2013.155.

Castiglia V, Piersigilli A, Ebner F, et al. Type I interferon signaling prevents IL-1β-driven lethal systemic hyperinflammation during invasive bacterial infection of soft tissu. Cell Host Microbe. 2016 Mar 9;19(3):375-87. doi: 10.1016/j.chom.2016.02.003.

Damjanovic D, Khera A, Medina MF, et al. Type 1 interferon gene transfer enhances host defense against pulmonary Streptococcus pneumoniae infection via activating innate leukocytes. Mol Ther Methods Clin Dev. 2014 Mar 19;1:5. doi: 10.1038/mtm.2014.5.

Shahangian A, Chow EK, Tian X, et al. Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J Clin Invest. 2009 Jul;119(7):1910-20. doi: 10.1172/JCI35412.

Schliehe C, Flynn EK, Vilagos B, et al. The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection. Nat Immunol. 2015 Jan;16(1):67-74. doi: 10.1038/ni.3046.

Cao J, Wang D, Xu F, et al. Activation of IL-27 signalling promotes development of postinfluenza pneumococcal pneumonia. EMBO Mol Med. 2014 Jan;6(1):120-40. doi: 10.1002/emmm.201302890.

Kudva A, Scheller EV, Robinson KM, et al. Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice. J Immunol. 2011 Feb 1;186(3):1666-1674. doi: 10.4049/jimmunol.1002194.

Lee B, Robinson KM, McHugh KJ, et al. Influenza-induced type I interferon enhances susceptibility to gram-negative and gram-positive bacterial pneumonia in mice. Am J Physiol Lung Cell Mol Physiol. 2015 Jul 15;309(2):L158-67. doi: 10.1152/ajplung.00338.2014.

Cohen TS, Prince AS. Bacterial pathogens activate a common inflammatory pathway through IFNlambda regulation of PDCD4. PLoS Pathog. 2013;9(10):e1003682. doi: 10.1371/journal.ppat.1003682.

Planet PJ, Parker D, Cohen TS, et al. Lambda Interferon Restructures the Nasal Microbiome and Increases Susceptibility to Staphylococcus aureus Superinfection. MBio. 2016 Feb 9;7(1):e01939-15. doi: 10.1128/mBio.01939-15.

Hendricks MR, Lashua LP, Fischer DK, et al. Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity. Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1642-7. doi: 10.1073/pnas.1516979113.

Brodsky IB, Bondarenko VM, Tomashevskaya NN, Sadchikova ER, Goldman IL. Antimicrobial, immunomodulatory and prebiotic properties of lactoferrin. Biulleten' Orenburgskogo nauchnogo tsentra UrO RAN. 2013;(4):3-15. (in Russian).

Berlutii F, Pantanella F, Natalizi T, et al. Antiviral properties of lactoferrin a natural immnunity molecule. Molecules. 2011 Aug 16;16(8):6992-7018. doi: 10.3390/molecules16086992.

Actor J, Hwang S, Kruzel M. Lactoferrin as a natural immune modulator. Curr Pharm Des. 2009;15(17):1956-73.

Kitsak VIa. Virusnye infektsii beremennykh: patologiia ploda i novorozhdennykh. Informatsionno-metodicheskoe posobie [Viral infections of pregnant women: pathology of the fetus and newborns. Information and methodical manual]. Novosibirsk: Vektor-Best ; 2004. 84 p. (in Russian).

Mal'chikov I. A. Znachenie virusnykh infektsii v patologii, sviazannoi s narusheniiami protivoinfektsionnoi zashchity, i metody ikh vyiavleniia. Diss. dokt. med. nauk [Significance of viral infections in the pathology associated with infringements of anti-infective protection, and methods for their detection. Dr. med. sci. diss.]. Ekaterinburg; 2007. 236 p. (in Russian).

Yin K, Agrawal DK. Vitamin D and inflammatory diseases. J Inflamm Res. 2014 May 29;7:69-87. doi: 10.2147/JIR.S63898.

Zughaier SM, Alvarez JA, Sloan JH , Konrad RJ, Tangpricha V. The role of vitamin D in regulating the iron-hepcidin-ferroportin axis in monocytes. J Clin Transl Endocrinol. 2014 Mar 21;1(1):19-25. doi: 10.1016/j.jcte.2014.01.003.

Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta. 2015 Jul;1852(7):1347-59. doi: 10.1016/j.bbadis.2015.03.011.

Ruchala P, Nemeth E. The pathophysiology and pharmacology of hepcidin. Trends Pharmacol Sci. 2014 Mar;35(3):155-61. doi: 10.1016/

Bacchetta J, Zaritsky JJ, Sea JL, et al. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol. 2014 Mar;25(3):564-72. doi: 10.1681/ASN.2013040355.

Copyright (c) 2020 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта