DOI: https://doi.org/10.22141/2224-0551.13.2.2018.129557

Inhibition of bacterial virulence factors as a method of treating bacterial pneumonia

А.Е. Abaturov, Т.А. Kryuchko

Abstract


Incremental increase in the number of antibiotic-resistant bacterial strains in the etiologic structure of pneumonia and reduced potential of antibiotic therapy increase the importance of drugs in the treatment of pneumonia, which are aimed at neutralizing virulence factors of etiologically significant bacterial agents. There are the following drug methods for monitoring the infectious process by suppressing bacterial virulence factors: inhibition of production of bacterial virulence factors, neutralizing virulence factors, blocking of receptors, blocking of receptors recognizing virulence factors. One possible method for the treatment of low-curable forms of pneumonia caused by antibiotic-resistant strains is the use of monoclonal antibodies (mAb) specific for certain antigens of respiratory-tropic pathogens. At present, technologies have been developed that make it possible to obtain fully humanized mAbs, which have a minimal level of immunogenicity and toxicity. In view of the high affinity of bacterial pore-forming toxins to the lipid bilayer of the cell membranes of the macroorganism, an alternative to specific mAbs as neutralizers of bacterial virulence factors are non-specific lipid sequestrants, wherein the experimental use of these sequestrants prevents the development of fatal septicemia.

Keywords


pneumonia; bacterial virulence factors; monoclonal antibodies

References


Budchanov YI. Monoclonal antibodies: from creation to clinical use. Clinical oncohematology. 2016;3(9):237-244. (in Russian).

Adawi A, Bisignano C, Genovese T, et al. In vitro and in vivo properties of a fully human IgG1 monoclonal antibody that combats multidrug resistant Pseudomonas aeruginosa. Int J Mol Med. 2012 Sep;30(3):455-64. doi: 10.3892/ijmm.2012.1040.

Baaske R, Richter M, Möller N, et al. ATP Release from Human Airway Epithelial Cells Exposed to Staphylococcus aureus Alpha-Toxin. Toxins (Basel). 2016 Dec 6;8(12). pii: E365. doi: 10.3390/toxins8120365.

Babb R, Pirofski LA. Help is on the way: Monoclonal antibody therapy for multi-drug resistant bacteria. Virulence. 2017 Oct 3;8(7):1055-1058. doi: 10.1080/21505594.2017.1306620.

Chhabria V, Beeton S. Development of nanosponges from erythrocyte ghosts for removal of streptolysin-O from mammalian blood. Nanomedicine (Lond). 2016 Oct 21. [Epub ahead of print]. doi: 10.2217/nnm-2016-0180.

Congy-Jolivet N, Probst A, Watier H, Thibault G. Recombinant therapeutic monoclonal antibodies: mechanisms of action in relation to structural and functional duality. Crit Rev Oncol Hematol. 2007 Dec;64(3):226-33. doi:10.1016/j.critrevonc.2007.06.013.

Diago-Navarro E, Calatayud-Baselga I, Sun D, et al. Antibody-Based Immunotherapy To Treat and Prevent Infection with Hypervirulent Klebsiella pneumoniae. Clin Vaccine Immunol. 2017 Jan 5;24(1). pii: e00456-16. doi: 10.1128/CVI.00456-16.

DiGiandomenico A, Keller AE, Gao C, et al. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci Transl Med. 2014 Nov 12;6(262):262ra155. doi: 10.1126/scitranslmed.3009655.

DiGiandomenico A, Warrener P, Hamilton M, et al. Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide Psl by phenotypic screening. J Exp Med. 2012 Jul 2;209(7):1273-87. doi: 10.1084/jem.20120033.

DiGiandomenico A, Sellman BR. Antibacterial monoclonal antibodies: the next generation? Curr Opin Microbiol. 2015 Oct;27:78-85. doi: 10.1016/j.mib.2015.07.014.

Distler U, Tenzer S. Tools for Pathogen Proteomics: Fishing with Biomimetic Nanosponges. ACS Nano. 2017 Dec 26;11(12):11768-11772. doi: 10.1021/acsnano.7b07363.

Dreymueller D, Uhlig S, Ludwig A, et al. ADAM-family metalloproteinases in lung inflammation: potential therapeutic targets. Am J Physiol Lung Cell Mol Physiol. 2015 Feb 15;308(4):L325-43. doi: 10.1152/ajplung.00294.2014.

Escajadillo T, Olson J, Luk BT, Zhang L, Nizet V. A Red Blood Cell Membrane-Camouflaged Nanoparticle Counteracts Streptolysin O-Mediated Virulence Phenotypes of Invasive Group A Streptococcus. Front Pharmacol. 2017 Jul 18;8:477. doi: 10.3389/fphar.2017.00477.

Innovative medicines initiative; Antibacterial Resistance Leadership Group (ARLG); National Institute of Allergy and Infectious Diseases (NIAID). Effort to prevent nosocomial pneumonia caused by Pseudomonas aeruginosa in mechanically ventilated subjects (EVADE). ClinicalTrials.gov Identifier: NCT02696902.

Geno KA, Gilbert GL, Song JY, et al. Pneumococcal Capsules and Their Types: Past, Present, and Future. Clin Microbiol Rev. 2015 Jul;28(3):871-99. doi: 10.1128/CMR.00024-15.

Henry BD, Neill DR, Becker KA, et al. Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat Biotechnol. 2015 Jan;33(1):81-8. doi: 10.1038/nbt.3037.

Hu CM, Fang RH, Copp J, Luk BT, Zhang L. A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol. 2013 May;8(5):336-40. doi: 10.1038/nnano.2013.54.

Inoshima I, Inoshima N, Wilke GA, et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med. 2011 Sep 18;17(10):1310-4. doi: 10.1038/nm.2451.

Kelly-Quintos C, Cavacini LA, Posner MR, Goldmann D, Pier GB. Characterization of the opsonic and protective activity against Staphylococcus aureus of fully human monoclonal antibodies specific for the bacterial surface polysaccharide poly-N-acetylglucosamine. Infect Immun. 2006 May;74(5):2742-50. doi: 10.1128/IAI.74.5.2742-2750.2006.

Khan N, Jan AT. Towards Identifying Protective B-Cell Epitopes: The PspA Story. Front Microbiol. 2017 May 2;8:742. doi: 10.3389/fmicb.2017.00742.

Kirkham LA, Kerr AR, Douce GR, et al. Construction and immunological characterization of a novel nontoxic protective pneumolysin mutant for use in future pneumococcal vaccines. Infect Immun. 2006 Jan;74(1):586-93. doi: 10.1128/IAI.74.1.586-593.200.

Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495-7.PMID: 1172191.

Kong C, Neoh HM, Nathan S. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy. Toxins (Basel). 2016 Mar 15;8(3). pii: E72. doi: 10.3390/toxins8030072.

Kristian SA, Ota T, Bubeck SS, et al. Generation and Improvement of Effector Function of a Novel Broadly Reactive and Protective Monoclonal Antibody against Pneumococcal Surface Protein A of Streptococcus pneumoniae. PLoS One. 2016 May 12;11(5):e0154616. doi: 10.1371/journal.pone.0154616.

Kumar A, Kumar A. Role of Staphylococcus aureus Virulence Factors in Inducing Inflammation and Vascular Permeability in a Mouse Model of Bacterial Endophthalmitis. PLoS One. 2015 Jun 8;10(6):e0128423. doi: 10.1371/journal.pone.0128423.

LaGrow AL, Coburn PS, Miller FC, et al. A Novel Biomimetic Nanosponge Protects the Retina from the Enterococcus faecalis Cytolysin. mSphere. 2017 Nov 22;2(6). pii: e00335-17. doi: 10.1128/mSphere.00335-17.

Liu Q, Yeo WS, Bae T. The SaeRS Two-Component System of Staphylococcus aureus. Genes (Basel). 2016 Oct 3;7(10). pii: E81. doi: 10.3390/genes7100081.

Matthews AL, Szyroka J, Collier R, Noy PJ, Tomlinson MG. Scissor sisters: regulation of ADAM10 by the TspanC8 tetraspanins. Biochem Soc Trans. 2017 Jun 15;45(3):719-730. doi: 10.1042/BST20160290.

McCormick CC, Caballero AR, Balzli CL, Tang A, O'Callaghan RJ. Chemical inhibition of alpha-toxin, a key corneal virulence factor of Staphylococcus aureus. Invest Ophthalmol Vis Sci. 2009 Jun;50(6):2848-54. doi: 10.1167/iovs.08-3157.

Milla CE, Chmiel JF, Accurso FJ, et al. Anti-PcrV antibody in cystic fibrosis: a novel approach targeting Pseudomonas aeruginosa airway infection. Pediatr Pulmonol. 2014 Jul;49(7):650-8. doi: 10.1002/ppul.22890.

Munguia J, Nizet V. Pharmacological Targeting of the Host-Pathogen Interaction: Alternatives to Classical Antibiotics to Combat Drug-Resistant Superbugs. Trends Pharmacol Sci. 2017 May;38(5):473-488. doi: 10.1016/j.tips.2017.02.003.

Murphy AJ, Macdonald LE, Stevens S, et al. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5153-8. doi: 10.1073/pnas.1324022111.

Nait Chabane Y, Mlouka MB, Alexandre S, et al. Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii. BMC Microbiol. 2014 Mar 12;14:62. doi: 10.1186/1471-2180-14-62.

Oh MH, Choi CH. Role of LuxIR Homologue AnoIR in Acinetobacter nosocomialis and the Effect of Virstatin on the Expression of anoR Gene. J Microbiol Biotechnol. 2015 Aug;25(8):1390-400. doi: 10.4014/jmb.1504.04069.

Parsons JB, Kukula M, Jackson P, et al. Perturbation of Staphylococcus aureus gene expression by the enoyl-acyl carrier protein reductase inhibitor AFN-1252. Antimicrob Agents Chemother. 2013 May;57(5):2182-90. doi: 10.1128/AAC.02307-12.

Patel M, Kaufman DA. Anti-lipoteichoic acid monoclonal antibody (pagibaximab) studies for the prevention of staphylococcal bloodstream infections in preterm infants. Expert Opin Biol Ther. 2015 Apr;15(4):595-600. doi: 10.1517/14712598.2015.1019857.

Que YA, Lazar H, Wolff M, et al. Assessment of panobacumab as adjunctive immunotherapy for the treatment of nosocomial Pseudomonas aeruginosa pneumonia. Eur J Clin Microbiol Infect Dis. 2014 Oct;33(10):1861-7. doi: 10.1007/s10096-014-2156-1.

Ragle BE, Karginov VA, Bubeck Wardenburg J. Prevention and treatment of Staphylococcus aureus pneumonia with a beta-cyclodextrin derivative. Antimicrob Agents Chemother. 2010 Jan;54(1):298-304. doi: 10.1128/AAC.00973-09.

Rodgers KR, Chou RC. Therapeutic monoclonal antibodies and derivatives: Historical perspectives and future directions. Biotechnol Adv. 2016 Nov 1;34(6):1149-58. doi: 10.1016/j.biotechadv.2016.07.004.

Roux D, Pier GB, Skurnik D. Magic bullets for the 21st century: the reemergence of immunotherapy for multi- and pan-resistant microbes. J Antimicrob Chemother. 2012 Dec;67(12):2785-7. doi: 10.1093/jac/dks335.

Song Y, Baer M, Srinivasan R, et al. PcrV antibody-antibiotic combination improves survival in Pseudomonas aeruginosa-infected mice. Eur J Clin Microbiol Infect Dis. 2012 Aug;31(8):1837-45. doi: 10.1007/s10096-011-1509-2.

Szijártó V, Guachalla LM, Hartl K, et al. Endotoxin neutralization by an O-antigen specific monoclonal antibody: A potential novel therapeutic approach against Klebsiella pneumoniae ST258. Virulence. 2017 Oct 3;8(7):1203-1215. doi: 10.1080/21505594.2017.1279778.

Tai SS. Streptococcus pneumoniae protein vaccine candidates: properties, activities and animal studies. Crit Rev Microbiol. 2006;32(3):139-53. doi: 10.1080/10408410600822942.

Thanabalasuriar A, Surewaard BG, Willson ME, et al. Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature. J Clin Invest. 2017 Jun 1;127(6):2249-2261. doi: 10.1172/JCI89652.

Tsuji BT, Harigaya Y, Lesse AJ, Forrest A, Ngo D. Activity of AFN-1252, a novel FabI inhibitor, against Staphylococcus aureus in an in vitro pharmacodynamic model simulating human pharmacokinetics. J Chemother. 2013 Feb;25(1):32-5. doi: 10.1179/1973947812Y.0000000060.

Vuong C, Yeh AJ, Cheung GY, Otto M. Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drugs. 2016;25(1):73-93. doi: 10.1517/13543784.2016.1109077.

Warrener P, Varkey R, Bonnell JC, et al. A novel anti-PcrV antibody providing enhanced protection against Pseudomonas aeruginosa in multiple animal infection models. Antimicrob Agents Chemother. 2014 Aug;58(8):4384-91. doi: 10.1128/AAC.02643-14.

Yano M, Gohil S, Coleman JR, et al. Antibodies to Streptococcus pneumoniae capsular polysaccharide enhance pneumococcal quorum sensing. MBio. 2011 Nov 1;2(5). pii: e00176-11. doi: 10.1128/mBio.00176-11.




Copyright (c) 2018 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2018

 

   Seo анализ сайта