Cerebral autoregulation and cerebrovascular injury in preterm infants: modern views on pathogenesis, diagnosis and preventive strategies

T.V. Kurilina


The review of scientific sources is directed at covering the achievements in understanding the features of cerebral perfusion autoregulation in prematurely born children, establishing the scope of modern methods of its monitoring and determining common approaches to the prevention of cerebrovascular disorders. The article deals with the history of investigation of cerebral vascular reactivity and the function of internal neuroprotective physiological phenomenon — cerebral autoregulation, in accordance with the latest international studies. A set of integrated mechanisms of cerebral autoregulation is reviewed. Studies about the role of myogenic, neurogenic and metabolic mechanisms, as well as their disorders in prematurely born children are presented. According to the data presented in the studies, immaturity of autoregulatory mechanisms, anatomical features of the brain tissue, plenty of internal and external factors affecting cerebrovascular structures cause a high risk of damage to the central nervous system in preterm infants. Efforts of researchers are directed at the development of non-invasive diagnostic technologies that can help to monitor cerebral oxygenation for a long time and promote timely correction of therapeutic approaches. Near-infrared spectroscopy is relatively new method in intensive neonatology, which already proved its safety and effectiveness in tactical decision making during the care of prematurely born children. Reference values of cerebral oxygenation obtained for preterm infants of different gestational age, which can be used in the practice of intensive neonatology to optimize infusion therapy and respiratory support of children at the preclinical stage of cerebrovascular damage, are presented in the review. The article considers issues about the diagnosis of hypotension in premature newborns, certain pharmacological approaches for the prevention and treatment of cerebral circulatory disorders.


preterm infant; cerebral autoregulation; near-infrared spectroscopy; cerebral regional oxygenation; cerebrovascular injuries; pathogenesis; diagnosis; review


Rhee CJ, Fraser CD, Kibler K, et al. The ontogeny of cerebrovascular pressure autoregulation in premature infants. J Perinatol. 2014 Dec;34(12):926-31. doi: 10.1038/jp.2014.122.

Vesoulis ZA, Mathur AM. Cerebral Autoregulation, Brain Injury, and the Transitioning Premature Infant. Front Pediatr. 2017 Apr 3;5:64. doi: 10.3389/fped.2017.00064. eCollection 2017.

Donnelly J, Aries MJ, Czosnyka M. Further understanding of cerebral autoregulation at the bedside: possible implications for future therapy. Expert Rev Neurother. 2015 Feb;15(2):169-85. doi: 10.1586/14737175.2015.996552.

Roy C, Sherrington C. On the regulation of the blood supply of the brain J Physiol. 1890 Jan;11(1-2):85-158.17.

Fantini S, Sassaroli A, Tgavalekos KT, Kornbluth J. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods. Neurophoton.2016;3(3):031411. doi: 10.1117/1.NPh.3.3.031411.

Dammann O, O’Shea TM. Cytokines and Perinatal Brain Damage. Clin Perinatol. 2008 Dec;35(4):643-63, v. doi: 10.1016/j.clp.2008.07.011.

Tan CO, Taylor JA. Integrative physiological and computational approaches to understand autonomic control of cerebral autoregulation. Exp Physiol. 2014 Jan;99(1):3-15. doi: 10.1113/expphysiol.2013.072355.

Kidokoro H, Anderson PJ, Doyle LW, Woodward LJ, Neil JJ, Inder TE. Brain Injury and Altered Brain Growth in Preterm Infants: Predictors and Prognosis. Pediatrics. 2014 Aug;134(2):e444-53. doi: 10.1542/peds.2013-2336.

Goadsby PJ. Autonomic nervous system control of the cerebral circulation. Handb Clin Neurol. 2013;117:193-201. doi: 10.1016/B978-0-444-53491-0.00016-X.

Brew N, Walker D, Wong FY. Cerebral vascular regulation and brain injury in preterm infants. Am J Physiol Regul Integr Comp Physiol. 2014 Jun 1;306(11):R773-86. doi: 10.1152/ajpregu.00487.2013.

Tsalach A, Ratner E, Lokshin S, et al. Cerebral Autoregulation Real-Time Monitoring. PLoS One. 2016 Aug 29;11(8):e0161907. doi: 10.1371/journal.pone.0161907. eCollection 2016.

Massaro AN, Govindan RB, Vezina G, et al. Impaired cerebral autoregulation and brain injury in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. J Neurophysiol. 2015 Aug;114(2):818-24. doi: 10.1152/jn.00353.2015.

Tian F, Tarumi T, Liu H, Zhang R, Chalak L. Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic–ischemic encephalopathy. Neuroimage Clin. 2016 Jan 25;11:124-32. doi: 10.1016/j.nicl.2016.01.020. eCollection 2016.

Hahn GH, Hyttel-Sorensen S, Petersen SM, Pryds O, Greisen G. Cerebral effects of commonly used vasopressor-inotropes: a study in newborn piglets. PLoS One. 2013 May 20;8(5):e63069. doi: 10.1371/journal.pone.0063069.

Vesoulis ZA, Liao SM, Trivedi SB, Ters NE, Mathur AM. A novel method for assessing cerebral autoregulation in preterm infants using transfer function analysis. Pediatr Res. 2016 Mar;79(3):453-9. doi: 10.1038/pr.2015.238.

Yoon SH, Zuccarello M, Rapoport M. pCO(2) and pH regulation of cerebral blood flow. Front Physiol. 2012 Sep 14;3:365. doi: 10.3389/fphys.2012.00365. eCollection 2012.

Ogoh S, Nakahara H, Ainslie PN, Miyamoto T. The effect of oxygen on dynamic cerebral autoregulation: critical role of hypocapnia. J Appl Physiol (1985). 2010 Mar;108(3):538-43. doi: 10.1152/japplphysiol.01235.2009.

Back SA. Cerebral white and gray matter injury in newborns: New insights into pathophysiology and management. Clin Perinatol. 2014 Mar;41(1):1-24. doi: 10.1016/j.clp.2013.11.001.

Leviton A, Gressens P, Wolkenhauer O, Dammann O. Systems approach to the study of brain damage in the very preterm newborn. Front Syst Neurosci. 2015 Apr 14;9:58. doi: 10.3389/fnsys.2015.00058. eCollection 2015.

Gould DB, Phalan FC, Breedveld GJ, et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science. 2005 May 20;308(5725):1167-71. doi:10.1126/science.1109418.

Gopel W, Hartel C, Ahrens P, et al. Interleukin-6-174-genotype, sepsis and cerebral injury in very low birth weight infants. Genes Immun. 2006 Jan;7(1):65-8. doi:10.1038/sj.gene.6364264.

Batton B. Etiology, clinical manifestations, evaluation, and management of low blood pressure in extremely preterm infants. Available from: Accessed: Mar 29, 2018.

Alderliesten T, Lemmers PM, van Haastert IC, et al. Hypotension in preterm neonates: low blood pressure alone does not affect neurodevelopmental outcome. J Pediatr. 2014 May;164(5):986-91. doi: 10.1016/j.jpeds.2013.12.042.

Dempsey EM. Challenges in Treating Low Blood Pressure in Preterm Infants. Children (Basel). 2015 Jun 15;2(2):272-88. doi: 10.3390/children2020272.

Batton B, Li L, Newman NS, et al. Evolving blood pressure dynamics for extremely preterm infants. J Perinatol. 2014 Apr;34(4):301-5. doi: 10.1038/jp.2014.6.

Costa CS, Czosnyka M, Smielewski P, Mitra S, Stevenson GN, Austin T. Monitoring of Cerebrovascular Reactivity for Determination of Optimal Blood Pressure in Preterm Infants. J Pediatr. 2015;167(1):86-91. doi: 10.1016/j.jpeds.2015.03.041.

Garner RS, Burchfield DJ. Treatment of presumed hypotension in very low birthweight neonates: effects on regional cerebral oxygenation. Arch Dis Child Fetal Neonatal Ed. 2013 Mar;98(2):F117-21. doi: 10.1136/archdischild-2011-301488.

Barrington KJ, Janaillac M. Treating hypotension in extremely preterm infants: The pressure is mounting. Arch Dis Child Fetal Neonatal Ed. 2016 May;101(3):F188-9. doi: 10.1136/archdischild-2015-309814.

Lampe R, Botkin N, Turova V, Blumenstein T, Alves-Pinto A. Mathematical Modeling of Cerebral Blood Circulation and Cerebral Autoregulation: Towards Preventing Intracranial Hemorrhages in Preterm Newborns. Comput Math Methods Med. 2014;2014:965275. doi: 10.1155/2014/965275.

Naulaers G, Caicedo A, van Huffel S. Use of Near Infrared Spectroscopy in the Neonatal Intensive Care Unit. In: Chen W, editor. Neonatal Monitoring Technologies: Design for Integrated Solutions. USA: IGI Global; 2012. 56-83pp. doi:10.4018/978-1-4666-0975-4.ch004.

Yu Y, Lu Y, Meng L, Han R. Monitoring cerebral ischemia using cerebral oximetry: pros and cons. J Biomed Res. 2016;30(1):1-4. doi:10.7555/JBR.30.20150096.

Ferrari M, Giannini I, Sideri G, Zanette E. Continuous non-invasive monitoring of human brain by near infrared spectroscopy. Adv Exp Med Biol. 1985;191:873–82. doi:10.1007/978-1-4684-3291-688.

Steppan J, Hogue CW. Cerebral and Tissue Oximetry. Best Pract Res Clin Anaesthesiol. 2014 Dec;28(4):429-39. doi: 10.1016/j.bpa.2014.09.002.

Ferrari M, Quaresima V. Near infrared brain muscle oximetry: from the discovery to current applications. J Near Infrared Spectrosc. 2012;20(1):1-14. doi: 10.1255/jnirs.973.

Ionita N, Dima M, Ilie C, Agoston-Vas AE, Nyiredi A. Near infrared spectroscopy in neonatal intensive care unit – a literature review. J Pediatrului.2013;16(64):70-3.

Kenosi M, Naulaers G, Ryan C, Dempsey E. Current research suggests that the future looks brighter for cerebral oxygenation monitoring in preterm infants. Acta Paediatr. 2015;104(3):225-31. doi:10.1111/apa.12906.

da Costa CS, Greisen G, Austin T. Is near-infrared spectroscopy clinically useful in the preterm infant? Arch Dis Child Fetal Neonatal Ed. 2015 Nov;100(6):F558-61. doi: 10.1136/archdischild-2014-307919.

Hyttel-Sorensen S, Pellicer A, Alderliesten T, et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ. 2015 Jan 5;350:g7635. doi: 10.1136/bmj.g7635.

Scheeren TWL, Bendjelid K. Journal of clinical monitoring and computing 2014 end of year summary: near infrared spectroscopy (NIRS). J Clin Monit Comput. 2015 Apr;29(2):217-20. doi: 10.1007/s10877-015-9689-4.

Riera J, Cabanas F, Serrano JJ, et al. New time-frequency method for cerebral autoregulation in newborns: predictive capacity for clinical outcomes. J Pediatr. 2014 Nov;165(5):897-902.e1. doi: 10.1016/j.jpeds.2014.06.008.

Vutskits L. Cerebral blood flow in the neonate. Paediatr Anaesth.2014;24(1):22-29. doi:10.1111/pan.12307.

Kusaka T, Isobe K, Yasuda S, et al. Evaluation of cerebral circulation and oxygen metabolism in infants using near-infrared light. Brain Dev. 2014 Apr;36(4):277-83. doi: 10.1016/j.braindev.2013.05.011.

Cerbo RM, Cabano R, Di Comite A, Longo S, Maragliano R, Stronati M. Cerebral and somatic rSO2 in sick preterm infants. J Matern Fetal Neonatal Med. 2012 Oct;25 Suppl 4:97-100. doi: 10.3109/14767058.2012.715030.

Alderliesten T, Dix L, Baerts W, et al. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr Res. 2016;79(1-1):55-64. doi: 10.1038/pr.2015.186.

Plomgaard AM, van Oeveren W, Petersen TH, et al. The SafeBoosC II randomized trial: treatment guided by near-infrared spectroscopy reduces cerebral hypoxia without changing early biomarkers of brain injury. Pediatr Res. 2016 Apr;79(4):528-35. doi: 10.1038/pr.2015.266.

Caicedo A, Alderliesten T, Naulaers G, Lemmers P, van Bel F, Van Huffel S. A new framework for the assessment of cerebral hemodynamics regulation in neonates using NIRS. Adv Exp Med Biol. 2016;876:501-509. doi: 10.1007/978-1-4939-3023-4_63.

Klein KU , Engelhard K. Perioperative neuroprotection. Best Pract Res Clin Anaesthesiol. 2010 Dec;24(4):535-49. doi: 10.1016/j.bpa.2010.10.008.

Smit E, Odd D, Whitelaw A. Postnatal phenobarbital for the prevention of intraventricular haemorrhage in preterm infants. Cochrane Database Syst Rev. 2013 Aug 13;(8):CD001691. doi: 10.1002/14651858.CD001691.pub3.

Mirza H, Oh W, Laptook A, Vohr B, Tucker R, Stonestreet BS. Indomethacin Prophylaxis to Prevent Intraventricular Hemorrhage: Association between Incidence and Timing of Drug Administration. J Pediatr. 2013 Sep;163(3):706-10.e1. doi: 10.1016/j.jpeds.2013.02.030.

Dang CN, Katakam LI, Smith PB, et al. Recombinant Activated Factor VIIa Treatment for Refractory Hemorrhage in Infants. J Perinatol. 2011 Mar;31(3):188-92. doi: 10.1038/jp.2010.85.

Denault A, Deschamps A, Murkin JM. A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin Cardiothorac Vasc Anesth. 2007 Dec;11(4):274-81. doi: 10.1177/1089253207311685.

Copyright (c) 2018 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2019


   Seo анализ сайта