Development of the immune response in pneumonia due to Staphylococcus aureus (part 8)

A.E. Abaturov, A.A. Nikulinà

Abstract


In the article, based on the literature, the role of cellular responses in the development of the immune response in pneumonia caused by Staphylococcus aureus is demonstrated. The mechanisms of interaction of Staphylococcus aureus with T-cells of the adaptive immune system, B-lymphocytes are described. A comparative characteristic of T-cell activation by the conventional antigen and superantigen of Staphylococcus aureus bacteria is presented, hereditary diseases with disorders of the Th17-associated signaling pathway associated with the risk of developing staphylococcal infection are described. The basic mechanisms of bacterial killing by immunocytes are de­monstrated.

Keywords


pneumonia; immune response; Staphylococcus aureus; T-lymphocytes; B-lymphocytes

References


Toptygina AP. Lymphoid follicle - the territory of the immune response. Immunology. 2012;33(3):162-168. (in Russian).

Annunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007 Aug 6;204(8):1849-61. doi: 10.1084/jem.20070663.

Arnon TI, Horton RM, Grigorova IL, Cyster JG. Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature. 2013 Jan 31;493(7434):684-8. doi: 10.1038/nature11738.

Badarau A, Rouha H, Malafa S et al. Context matters: The importance of dimerization-induced conformation of the LukGH leukocidin of Staphylococcus aureus for the generation of neutralizing antibodies. MAbs. 2016 Oct;8(7):1347-1360. doi: 10.1080/19420862.2016.1215791.

Baumgarth N. B-1 Cell Heterogeneity and the Regulation of Natural and Antigen-Induced IgM Production. Front Immunol. 2016 Sep 9;7:324. doi: 10.3389/fimmu.2016.00324.

Becattini S, Latorre D, Mele F, et al. T cell immunity. Functional heterogeneity of human memory CD4⁺ T cell clones primed by pathogens or vaccines. Science. 2015 Jan 23;347(6220):400-6. doi: 10.1126/science.1260668.

Berube BJ, Bubeck Wardenburg J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins (Basel). 2013 Jun;5(6):1140-66. PMID: 23888516.

Boswell KL, Paris R, Boritz E, et al. Loss of circulating CD4 T cells with B cell helper function during chronic HIV infection. PLoS Pathog. 2014 Jan 30;10(1):e1003853. doi: 10.1371/journal.ppat.1003853.

Bröker BM, Mrochen D, Péton V. The T Cell Response to Staphylococcus aureus. Pathogens. 2016 Mar 17;5(1). pii: E31. doi: 10.3390/pathogens5010031.

Bröker BM, Holtfreter S, Bekeredjian-Ding I. Immune control of Staphylococcus aureus - regulation and counter-regulation of the adaptive immune response. Int J Med Microbiol. 2014 Mar;304(2):204-14. doi: 10.1016/j.ijmm.2013.11.008.

Bröker BM, van Belkum A. Immune proteomics of Staphylococcus aureus. Proteomics. 2011 Aug;11(15):3221-31. doi: 10.1002/pmic.201100010.

Brown AF, Murphy AG, Lalor SJ, et al. Memory Th1 Cells Are Protective in Invasive Staphylococcus aureus Infection. PLoS Pathog. 2015 Nov 5;11(11):e1005226. doi: 10.1371/journal.ppat.1005226.

Casbon AJ, Long ME, Dunn KW, Allen LA, Dinauer MC. Effects of IFN-γ on intracellular trafficking and activity of macrophage NADPH oxidase flavocytochrome b558. J Leukoc Biol. 2012 Oct;92(4):869-82. doi: 10.1189/jlb.0512244.

Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol. 2013 Feb;13(2):118-32. doi: 10.1038/nri3383.

Choi SJ, Kim MH, Jeon J, et al. Active Immunization with Extracellular Vesicles Derived from Staphylococcus aureus Effectively Protects against Staphylococcal Lung Infections, Mainly via Th1 Cell-Mediated Immunity. PLoS One. 2015 Sep 2;10(9):e0136021. doi: 10.1371/journal.pone.0136021.

Cohen TS, Hilliard JJ, Jones-Nelson O, et al. Staphylococcus aureus α toxin potentiates opportunistic bacterial lung infections. Sci Transl Med. 2016 Mar 9;8(329):329ra31. doi: 10.1126/scitranslmed.aad9922.

Cunningham AF, Flores-Langarica A, Bobat S, et al. B1b cells recognize protective antigens after natural infection and vaccination. Front Immunol. 2014 Oct 31;5:535. doi: 10.3389/fimmu.2014.00535.

den Reijer PM, Lemmens-den Toom N, Kant S, et al. Characterization of the humoral immune response during Staphylococcus aureus bacteremia and global gene expression by Staphylococcus aureus in human blood. PLoS One. 2013;8(1):e53391. doi: 10.1371/journal.pone.0053391.

Feldman S, Kasjanski R, Poposki J, et al. Chronic airway inflammation provides a unique environment for B cell activation and antibody production. Clin Exp Allergy. 2017 Apr;47(4):457-466. doi: 10.1111/cea.12878.

Fillatreau S. Regulatory roles of B cells in infectious diseases. Clin Exp Rheumatol. 2016 Jul-Aug;34(4 Suppl 98): PMID: 27586794.

Golubovskaya V, Wu L. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy. Cancers (Basel). 2016 Mar 15;8(3). pii: E36. doi: 10.3390/cancers8030036.

Greenlee-Wacker MC, Nauseef WM. IFN-γ targets macrophage-mediated immune responses toward Staphylococcus aureus. J Leukoc Biol. 2017 Mar;101(3):751-758. doi: 10.1189/jlb.4A1215-565RR.

Griffin DO, Rothstein TL. A small CD11b(+) human B1 cell subpopulation stimulates T cells and is expanded in lupus. J Exp Med. 2011 Dec 19;208(13):2591-8. doi: 10.1084/jem.20110978.

Gunti S, Notkins AL. Polyreactive Antibodies: Function and Quantification. J Infect Dis. 2015 Jul 15;212 Suppl 1:S42-6. doi: 10.1093/infdis/jiu512.

Hale JS, Ahmed R. Memory T follicular helper CD4 T cells. Front Immunol. 2015 Feb 2;6:16. doi: 10.3389/fimmu.2015.00016.

Hardy RR, Hayakawa K. Selection of natural autoreactive B cells. Clin Exp Rheumatol. 2015 Jul-Aug;33(4 Suppl 92):S80-6. PMID: 26457505.

Hoffman W, Lakkis FG, Chalasani G. B Cells, Antibodies, and More. Clin J Am Soc Nephrol. 2016 Jan 7;11(1):137-54. doi: 10.2215/CJN.09430915.

Holtfreter S, Nguyen TT, Wertheim H, et al. Human immune proteome in experimental colonization with Staphylococcus aureus. Clin Vaccine Immunol. 2009 Nov;16(11):1607-14. doi: 10.1128/CVI.00263-09.

Holtfreter S, Kolata J, Stentzel S, et al. Omics Approaches for the Study of Adaptive Immunity to Staphylococcus aureus and the Selection of Vaccine Candidates. Proteomes. 2016 Mar 7;4(1). pii: E11. doi: 10.3390/proteomes4010011.

Keener AB, Thurlow LT, Kang S, et al. Staphylococcus aureus Protein A Disrupts Immunity Mediated by Long-Lived Plasma Cells. J Immunol. 2017 Feb 1;198(3):1263-1273. doi: 10.4049/jimmunol.1600093.

Kim MR, Hong SW, Choi EB, et al. Staphylococcus aureus-derived extracellular vesicles induce neutrophilic pulmonary inflammation via both Th1 and Th17 cell responses. Allergy. 2012 Oct;67(10):1271-81. doi: 10.1111/all.12001.

Kolata JB, Kühbandner I, Link C, et al. The Fall of a Dogma? Unexpected High T-Cell Memory Response to Staphylococcus aureus in Humans. J Infect Dis. 2015 Sep 1;212(5):830-8. doi: 10.1093/infdis/jiv128.

Krishna S, Miller LS. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin Immunopathol. 2012 Mar;34(2):261-80. doi: 10.1007/s00281-011-0292-6.

Leonard WJ, Wan CK. IL-21 Signaling in Immunity. F1000Res. 2016 Feb 26;5. pii: F1000 Faculty Rev-224. doi: 10.12688/f1000research.7634.1.

Lin L, Ibrahim AS, Xu X, et al. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog. Dec;5(12):e1000703. doi: 10.1371/journal.ppat.1000703.

Linterman MA, Hill DL. Can follicular helper T cells be targeted to improve vaccine efficacy? F1000Res. 2016 Jan 20;5. pii: F1000 Faculty Rev-88. doi: 10.12688/f1000research.7388.1.

Lobo PI. Role of Natural Autoantibodies and Natural IgM Anti-Leucocyte Autoantibodies in Health and Disease. Front Immunol. 2016 Jun 6;7:198. doi: 10.3389/fimmu.2016.00198.

Locci M, Havenar-Daughton C, Landais E, et al. Human circulating PD-1+CXCR3-CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity. 2013 Oct 17;39(4):758-69. doi: 10.1016/j.immuni.2013.08.031.

Lönnqvist A, Ostman S, Almqvist N, et al. Neonatal exposure to staphylococcal superantigen improves induction of oral tolerance in a mouse model of airway allergy. Eur J Immunol. 2009 Feb;39(2):447-56. doi: 10.1002/eji.200838418.

Ma CS, Wong N, Rao G, et al. Unique and shared signaling pathways cooperate to regulate the differentiation of human CD4+ T cells into distinct effector subsets. J Exp Med. 2016 Jul 25;213(8):1589-608. doi: 10.1084/jem.20151467.

Missiakas D, Schneewind O. Staphylococcus aureus vaccines: Deviating from the carol. J Exp Med. 2016 Aug 22;213(9):1645-53. doi: 10.1084/jem.20160569.

Morita R, Schmitt N, Bentebibel SE, et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011 Jan 28;34(1):108-21. doi: 10.1016/j.immuni.2010.12.012.

Otto M. Novel targeted immunotherapy approaches for staphylococcal infection. Expert Opin Biol Ther. 2010 Jul;10(7):1049-59. doi: 10.1517/14712598.2010.495115.

Park C, Hwang IY, Sinha RK, Kamenyeva O, Davis MD, Kehrl JH. Lymph node B lymphocyte trafficking is constrained by anatomy and highly dependent upon chemoattractant desensitization. Blood. 2012 Jan 26;119(4):978-89. doi: 10.1182/blood-2011-06-364273.

Parker D, Ryan CL, Alonzo F, et al. CD4+ T cells promote the pathogenesis of Staphylococcus aureus pneumonia. J Infect Dis. 2015 Mar 1;211(5):835-45. doi: 10.1093/infdis/jiu525.

Patel DD, Kuchroo VK. Th17 Cell Pathway in Human Immunity: Lessons from Genetics and Therapeutic Interventions. Immunity. 2015 Dec 15;43(6):1040-51. doi: 10.1016/j.immuni.2015.12.003.

Pozzi C, Lofano G, Mancini F, et al. Phagocyte subsets and lymphocyte clonal deletion behind ineffective immune response to Staphylococcus aureus. FEMS Microbiol Rev. 2015 Sep;39(5):750-63. doi: 10.1093/femsre/fuv024.

Qi H. T follicular helper cells in space-time. Nat Rev Immunol. 2016 Oct;16(10):612-25. doi: 10.1038/nri.2016.94.

Rahe MC, Murtaugh MP. Interleukin-21 Drives Proliferation and Differentiation of Porcine Memory B Cells into Antibody Secreting Cells. PLoS One. 2017 Jan 26;12(1):e0171171. doi: 10.1371/journal.pone.0171171.

Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 2015 Jul;74(1):5-17. doi: 10.1016/j.cyto.2014.09.011.

Rettig TA, Harbin JN, Harrington A, Dohmen L, Fleming SD. Evasion and interactions of the humoral innate immune response in pathogen invasion, autoimmune disease, and cancer. Clin Immunol. 2015 Oct;160(2):244-54. doi: 10.1016/j.clim.2015.06.012.

Rouha H, Badarau A, Visram ZC, et al. Five birds, one stone: neutralization of α-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. MAbs. 2015;7(1):243-54. doi: 10.4161/19420862.2014.985132.

Sahay B, Owen JL, Yang T, et al. Activation of B cells by a dendritic cell-targeted oral vaccine. Curr Pharm Biotechnol. 2013;14(10):867-77. PMID: 24372255.

Sawaf M, Dumortier H, Monneaux F. Follicular Helper T Cells in Systemic Lupus Erythematosus: Why Should They Be Considered as Interesting Therapeutic Targets? J Immunol Res. 2016;2016:5767106. doi: 10.1155/2016/5767106.

Schaerli P, Willimann K, Lang AB, et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med. 2000 Dec 4;192(11):1553-62. PMID: 11104798.

Seifert M, Küppers R. Human memory B cells. Leukemia. 2016 Dec;30(12):2283-2292. doi: 10.1038/leu.2016.226.

Selle M, Hertlein T, Oesterreich B, et al. Global antibody response to Staphylococcus aureus live-cell vaccination. Sci Rep. 2016 Apr 22;6:24754. doi: 10.1038/srep24754.

Silverman GJ, Goodyear CS. Confounding B-cell defences: lessons from a staphylococcal superantigen. Nat Rev Immunol. 2006 Jun;6(6):465-75. doi: 10.1038/nri1853.

Stentzel S, Sundaramoorthy N, Michalik S, et al. Specific serum IgG at diagnosis of Staphylococcus aureus bloodstream invasion is correlated with disease progression. J Proteomics. 2015 Oct 14;128:1-7. doi: 10.1016/j.jprot.2015.06.018.

Suzuki K, Maruya M, Kawamoto S, Fagarasan S. Roles of B-1 and B-2 cells in innate and acquired IgA-mediated immunity. Immunol Rev. 2010 Sep;237(1):180-90. doi: 10.1111/j.1600-065X.2010.00941.x.

Swindle EJ, Brown JM, Rådinger M, et al. Interferon-γ enhances both the anti-bacterial and the pro-inflammatory response of human mast cells to Staphylococcus aureus. Immunology. 2015 Nov;146(3):470-85. doi: 10.1111/imm.12524.

Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol. 2015 Sep;13(9):529-43. doi: 10.1038/nrmicro3521.

Vahedi G, Poholek AC, Hand TW, et al. Helper T-cell identity and evolution of differential transcriptomes and epigenomes. Immunol Rev. 2013 Mar;252(1):24-40. doi: 10.1111/imr.12037.

van den Berg S, Bowden MG, Bosma T, et al. A multiplex assay for the quantification of antibody responses in Staphylococcus aureus infections in mice. J Immunol Methods. 2011 Feb 28;365(1-2):142-8. doi: 10.1016/j.jim.2010.12.013.

Verkaik NJ, de Vogel CP, Boelens HA, et al. Anti-staphylococcal humoral immune response in persistent nasal carriers and noncarriers of Staphylococcus aureus. J Infect Dis. 2009 Mar 1;199(5):625-32. doi: 10.1086/596743.

Verkaik NJ, Boelens HA, de Vogel CP, et al. Heterogeneity of the humoral immune response following Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis. 2010 May;29(5):509-18. doi: 10.1007/s10096-010-0888-0.

Verkaik NJ, van Wamel WJ, van Belkum A. Immunotherapeutic approaches against Staphylococcus aureus. Immunotherapy. 2011 Sep;3(9):1063-73. doi: 10.2217/imt.11.84.

Wertheim HF, Vos MC, Ott A, et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet. 2004 Aug 21-27;364(9435):703-5. doi: 10.1016/S0140-6736(04)16897-9.

Zielinski CE, Mele F, Aschenbrenner D, et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature. 2012 Apr 26;484(7395):514-8. doi: 10.1038/nature10957.

Zouali M, Richard Y. Marginal zone B-cells, a gatekeeper of innate immunity. Front Immunol. 2011 Dec 13;2:63. doi: 10.3389/fimmu.2011.00063.




DOI: https://doi.org/10.22141/2224-0551.13.1.2018.127078

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2018

 

   Seo анализ сайта