The drugs based on molecular structures of antimicrobial peptides and their therapeutic potential in the treatment of infectious diseases of the respiratory tract (part 2)

А.Е. Abaturov, Т.А. Kryuchko, G.O. Lezhenko

Abstract


Currently in medical practice, the effectiveness of the use of antimicrobial peptides, such as derivatives of cathelicidin (omiganan), defensin mimetic (brilacidin), α-helical magainin (pexiganan), synthetic antimicrobial peptide mimetic (lithixar), has been demonstrated in the treatment of the local infectious process. However, the drugs of this group, which may be recommended for the treatment of pneumonia, are in the early stages of studies. Creation of new antimicrobial peptides with a high therapeutic index (bactericidal activity and toxicity ratio) and solution of the problem of their delivery to the lesion focus in the lung will allow the eradication of bacteria with multi-drug resistance in patients with infectious diseases, including the infections of the respiratory tract. This approach will open the post-antibiotic era in the wide practical activities of pediatricians, intensive care specialists, therapeutists and surgeons.

Keywords


infectious diseases; antimicrobial peptides; defensins

References


Abaturov АYe. Importance of metal-binding proteins in nonspecific protection of the respiratory tract: Lactoferrin. Zdorov'ye Rebenka. 2009;4(19):125-8.

Baranska-Rybak W, Cirioni O, Dawgul M, et al. Activity of Antimicrobial Peptides and Conventional Antibiotics against Superantigen Positive Staphylococcus aureus Isolated from the Patients with Neoplastic and Inflammatory Erythrodermia. Chemother Res Pract. 2011;2011:270932. doi: 10.1155/2011/270932.

Bezzerri V, Avitabile C, Dechecchi MC, et al. Antibacterial and anti-inflammatory activity of a temporin B peptide analogue on an in vitro model of cystic fibrosis. J Pept Sci. 2014 Oct;20(10):822-30. doi: 10.1002/psc.2674.

Boland MP, Separovic F. Membrane interactions of antimicrobial peptides from Australian tree frogs. Biochim Biophys Acta. 2006 Sep;1758(9):1178-83. doi: 10.1016/j.bbamem.2006.02.010.

Bolintineanu D.S., Kaznessis Y.N. Computational studies of protegrin antimicrobial peptides: a review. Peptides. 2011 Jan;32(1):188-201. doi: 10.1016/j.peptides.2010.10.006.

Bolintineanu DS, Vivcharuk V, Kaznessis YN. Multiscale models of the antimicrobial peptide protegrin-1 on gram-negative bacteria membranes. Int J Mol Sci. 2012;13(9):11000-11. doi: 10.3390/ijms130911000.

Bolosov IA, Kalashnikov AA, Panteleev PV, Ovchinnikova TV. Analysis of Synergistic Effects of Antimicrobial Peptide Arenicin-1 and Conventional Antibiotics. Bull Exp Biol Med. 2017 Apr;162(6):765-768. doi: 10.1007/s10517-017-3708-z.

Calabrese AN, Liu Y, Wang T, et al. The Amyloid Fibril-Forming Properties of the Amphibian Antimicrobial Peptide Uperin 3.5. Chembiochem. 2016 Feb 2;17(3):239-46. doi: 10.1002/cbic.201500518.

Carneiro VA, Duarte HS, Prado MGV, et al. Antimicrobial peptides: from synthesis to clinical perspectives. In: Méndez-Vilas, editor. The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs. Spain: Formatex Research Center; 2015. 81-90 p.

Chaveli-López B, Bagán-Sebastián JV. Treatment of oral mucositis due to chemotherapy. J Clin Exp Dent. 2016 Apr 1;8(2):e201-9. doi: 10.4317/jced.52917.

Cirioni O, Silvestri C, Pierpaoli E, et al. IB-367 pre-treatment improves the in vivo efficacy of teicoplanin and daptomycin in an animal model of wounds infected with meticillin-resistant Staphylococcus aureus. J Med Microbiol. 2013 Oct;62(Pt 10):1552-8. doi: 10.1099/jmm.0.057414-0.

Dawgul M, Baranska-Rybak W, Piechowicz L, et al. The Antistaphylococcal Activity of Citropin 1.1 and Temporin A against Planktonic Cells and Biofilms Formed by Isolates from Patients with Atopic Dermatitis: An Assessment of Their Potential to Induce Microbial Resistance Compared to Conventional Antimicrobials. Pharmaceuticals (Basel). 2016 May 25;9(2). pii: E30. doi: 10.3390/ph9020030.

Edwards IA, Elliott AG, Kavanagh AM, Zuegg J, Blaskovich MA, Cooper MA. Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of β-Hairpin Peptides. ACS Infect Dis. 2016 Jun 10;2(6):442-450. doi: 10.1021/acsinfecdis.6b00045.

Falanga A, Lombardi L, Franci G, et al. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria. Int J Mol Sci. 2016 May 21;17(5). pii: E785. doi: 10.3390/ijms17050785.

Fratini F, Cilia G, Turchi B, Felicioli A. Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon. 2017 May;130:91-103. doi: 10.1016/j.toxicon.2017.02.020.

Garbacz K, Kamysz W, Piechowicz L. Activity of antimicrobial peptides, alone or combined with conventional antibiotics, against Staphylococcus aureus isolated from the airways of cystic fibrosis patients. Virulence. 2017 Jan 2;8(1):94-100. doi: 10.1080/21505594.2016.1213475.

Gerardo NM, Altincicek B, Anselme C, et al. Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol. 2010;11(2):R21. doi: 10.1186/gb-2010-11-2-r21.

Giacometti A, Cirioni O, Kamysz W, et al. In vitro activity and killing effect of uperin 3.6 against gram-positive cocci isolated from immunocompromised patients. Antimicrob Agents Chemother. 2005 Sep;49(9):3933-6. doi: 10.1128/AAC.49.9.3933-3936.2005.

Haney EF, Hunter HN, Matsuzaki K, Vogel HJ. Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? Biochim Biophys Acta. 2009 Aug;1788(8):1639-55. doi: 10.1016/j.bbamem.2009.01.002.

Kang HK, Kim C, Seo CH, Park Y. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J Microbiol. 2017 Jan;55(1):1-12. doi: 10.1007/s12275-017-6452-1.

Kim IW, Lee JH, Park HY, et al. Characterization and cDNA cloning of a defensin-like peptide, harmoniasin, from Harmonia axyridis. J Microbiol Biotechnol. 2012 Nov;22(11):1588-90. PMID: 23124352.

Kollef M, Pittet D, Sánchez García M, et al. A randomized double-blind trial of iseganan in prevention of ventilator-associated pneumonia. Am J Respir Crit Care Med. 2006 Jan 1;173(1):91-7. doi: 10.1164/rccm.200504-656OC.

Laadhari M, Arnold AA, Gravel AE, Separovic F, Marcotte I. Interaction of the antimicrobial peptides caerin 1.1 and aurein 1.2 with intact bacteria by 2H solid-state NMR. Biochim Biophys Acta. 2016 Dec;1858(12):2959-2964. doi: 10.1016/j.bbamem.2016.09.009.

Li J, Xie D, Li A, Yue J. Oral topical decontamination for preventing ventilator-associated pneumonia: a systematic review and meta-analysis of randomized controlled trials. J Hosp Infect. 2013 Aug;84(4):283-93. doi: 10.1016/j.jhin.2013.04.012.

Liu J, Jung JH, Liu Y. Antimicrobial Compounds from Marine Invertebrates-Derived Microorganisms. Curr Med Chem. 2016;23(25):2892-905. doi: 10.2174/0929867323666160525113837.

Ma B, Niu C, Zhou, et al. The Disulfide Bond of the Peptide Thanatin Is Dispensible for Its Antimicrobial Activity In Vivo and In Vitro. Antimicrob Agents Chemother. 2016 Jun 20;60(7):4283-9. doi: 10.1128/AAC.00041-16.

Mahalka AK, Kinnunen PK. Binding of amphipathic alpha-helical antimicrobial peptides to lipid membranes: lessons from temporins B and L. Biochim Biophys Acta. 2009 Aug;1788(8):1600-9. doi: 10.1016/j.bbamem.2009.04.012.

Wallnöfer A. Murepavadin (POL7080): a pathogen-specific, novel antibiotic for the treatment of infections due to p. aeruginosa in patients with nosocomial pneumonia. Washington: FDA Public Workshop; 2017. 13 p.

Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A. Diversity, evolution and medical applications of insect antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695). pii: 20150290. doi: 10.1098/rstb.2015.0290.

Puknun A, Kanthawong S, Anutrakunchai C, et al. Ultrastructural effects and antibiofilm activity of LFchimera against Burkholderia pseudomallei. World J Microbiol Biotechnol. 2016 Feb;32(2):33. doi: 10.1007/s11274-015-1988-x.

Rangel M, de Santana CJ, Pinheiro A. Marine Depsipeptides as Promising Pharmacotherapeutic Agents. Curr Protein Pept Sci. 2017;18(1):72-91. doi: 10.2174/1389203717666160526122130.

Sable R, Parajuli P, Jois S. Peptides, Peptidomimetics, and Polypeptides from Marine Sources: A Wealth of Natural Sources for Pharmaceutical Applications. Mar Drugs. 2017 Apr 22;15(4). pii: E124. doi: 10.3390/md15040124.

Salas C.E, Badillo-Corona JA, Ramírez-Sotelo G, Oliver-Salvador C. Biologically active and antimicrobial peptides from plants. Biomed Res Int. 2015;2015:102129. doi: 10.1155/2015/102129.

Sijbrandij T, Ligtenberg AJ, Nazmi K, Veerman EC, Bolscher JG, Bikker FJ. Effects of lactoferrin derived peptides on simulants of biological warfare agents. World J Microbiol Biotechnol. 2017 Jan;33(1):3. doi: 10.1007/s11274-016-2171-8.

Simonetti O, Cirioni O, Ghiselli R, et al. In vitro activity and in vivo animal model efficacy of IB-367 alone and in combination with imipenem and colistin against Gram-negative bacteria. Peptides. 2014 May;55:17-22. doi: 10.1016/j.peptides.2014.01.029.

Tonk M, Vilcinskas A, Rahnamaeian M. Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Appl Microbiol Biotechnol. 2016 Sep;100(17):7397-405. doi: 10.1007/s00253-016-7718-y.

Walkenhorst WF. Using adjuvants and environmental factors to modulate the activity of antimicrobial peptides. Biochim Biophys Acta. 2016 May;1858(5):926-35. doi: 10.1016/j.bbamem.2015.12.034.

Wang X, Teng D, Mao R, Yang N, Hao Y, Wang J. Combined Systems Approaches Reveal a Multistage Mode of Action of a Marine Antimicrobial Peptide against Pathogenic Escherichia coli and Its Protective Effect against Bacterial Peritonitis and Endotoxemia Antimicrob Agents Chemother. 2016 Dec 27;61(1). pii: e01056-16. doi: 10.1128/AAC.01056-16.

Wenzel M, Senges CH, Zhang J, et al. Antimicrobial Peptides from the Aurein Family Form Ion-Selective Pores in Bacillus subtilis. Chembiochem. 2015 May 4;16(7):1101-8. doi: 10.1002/cbic.201500020.

Wu G, Wu P, Xue X, et al. Application of S-thanatin, an antimicrobial peptide derived from thanatin, in mouse model of Klebsiella pneumoniae infection. Peptides. 2013 Jul;45:73-7. doi: 10.1016/j.peptides.2013.04.012.

Yi HY, Chowdhury M, Huang YD, Yu XQ, et al. Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol. 2014 Jul;98(13):5807-22. doi: 10.1007/s00253-014-5792-6.




DOI: https://doi.org/10.22141/2224-0551.13.1.2018.127070

Copyright (c) 2018 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2018

 

   Seo анализ сайта