The drugs based on molecular structures of antimicrobial peptides and their therapeutic potential in the treatment of infectious diseases of the respiratory tract (part 1)

А.Е. Abaturov, Т.А. Kryuchko, G.O. Lezhenko


The actual trend of recent researches focused on finding and developing new antimicrobial drugs is a study of molecular structures of endolysins, bacteriocins, antimicrobial peptides, and also the creation of preparations with monoclonal antibodies targeted to bacterial virulence factors, probiotics and vaccines. The antimicrobial peptides interacting with bacteria lead to the destruction of the bacterial wall due to a violation of its integrity, namely the formation of cylindrical, toroidal pores or by rupturing the internal membrane of the bacterial wall. The majority of human antimicrobial peptides are represented by cathelicidin and defensins. Currently, active scientific researches are under way to create derivatives or analogues of human defensins, which could be used as medicines in the treatment of infectious diseases of the respiratory tract.


antimicrobial drugs; antimicrobial peptides; defensins


Abaturov AE, Gerasimenko ON, Vysochina IL, Zavgorodniaia NIu. Defensins and defensin-dependent diseases. Odessa: VMV, 2011. 265 p. ( in Russian).

Budikhina AS, Pinegin BV. β:Defensins: properties and functions. Russian Allergology Journal. 2008;3(15-21). (in Russian).

Banaschewski BJ, Veldhuizen EJ, Keating E, et al. Antimicrobial and biophysical properties of surfactant supplemented with an antimicrobial peptide for treatment of bacterial pneumonia. Antimicrob Agents Chemother. 2015;59(6):3075-83. doi: 10.1128/AAC.04937-14.

Bandurska K, Berdowska A, Barczyńska-Felusiak R, Krupa P. Unique features of human cathelicidin LL-37. Biofactors. 2015 Sep-Oct;41(5):289-300. doi: 10.1002/biof.1225.

Barksdale SM, Hrifko EJ, van Hoek ML. Cathelicidin antimicrobial peptide from Alligator mississippiensis has antibacterial activity against multi-drug resistant Acinetobacter baumanii and Klebsiella pneumoniae. Dev Comp Immunol. 2017 May;70:135-44. doi: 10.1016/j.dci.2017.01.011.

Bensch KW, Raida M, Mägert HJ, Schulz-Knappe P, Forssmann WG. hBD-1: a novel beta-defensin from human plasma. FEBS Lett. 1995 Jul 17;368(2):331-5. PMID: 7628632.

Brinch KS, Sandberg A, Baudoux P, et al. Plectasin shows intracellular activity against Staphylococcus aureus in human THP-1 monocytes and in a mouse peritonitis model. Antimicrob Agents Chemother. 2009 Nov; 53(11): 4801-8. doi: 10.1128/AAC.00685-09.

Conibear AC, Craik DJ. The chemistry and biology of theta defensins. Angew Chem Int Ed Engl. 2014 Sep 26;53(40):10612-23. doi: 10.1002/anie.201402167.

Coorens M, Scheenstra MR, Veldhuizen EJA, et al. Interspecies cathelicidin comparison reveals divergence in antimicrobial activity, TLR modulation, chemokine induction and regulation of phagocytosis. Sci Rep. 2017;7: 40874. doi: 10.1038/srep40874.

Czaplewski L, Bax R, Clokie M, et al. Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis. 2016 Feb;16(2):239-51. doi: 10.1016/S1473-3099(15)00466-1.

Diamond G, Zasloff M, Eck H, Brasseur M, Maloy WL, Bevins CL. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3952-6. PMCID: PMC51571.

Dubos RJ. Studies on a bactericidal agent extracted from a soil bacillus: I.Preparation of the agent. Its activity in vitro. J Exp Med. 1939 Jun 30;70(1):1-10. PMCID: PMC2133784.

Fabisiak A, Murawska N, Fichna J. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacol Rep. 2016 Aug;68(4):802-8. doi: 10.1016/j.pharep.2016.03.015.

Faye I, Lindberg BG. Towards a paradigm shift in innate immunity-seminal work by Hans G. Boman and co-workers. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695). pii: 20150303. doi: 10.1098/rstb.2015.0303.

Fjell CD, Hiss JA, Hancock RE, Schneider G. Designing antimicrobial peptides: form follows function.// C.D. Fjell, J.A Hiss., R.E. Hancock, G. Schneider// Nat Rev Drug Discov. 2011 Dec 16;11(1):37-51. doi: 10.1038/nrd3591.

Grönberg A, Mahlapuu M, Ståhle M, Whately-Smith C, Rollman O. Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial. Wound Repair Regen. 2014 Sep-Oct;22(5):613-21. doi: 10.1111/wrr.12211.

Gupta R, Malik A, Rizvi M, Ahmed M, Singh A. Epidemiology of multidrug-resistant Gram-negative pathogens isolated from ventilator-associated pneumonia in ICU patients. J Glob Antimicrob Resist. 2017 Jun;9:47-50. doi: 10.1016/j.jgar.2016.12.016.

Haisma EM, Göblyös A, Ravensbergen B, et al. Antimicrobial Peptide P60.4Ac-Containing Creams and Gel for Eradication of Methicillin-Resistant Staphylococcus aureus from Cultured Skin and Airway Epithelial Surfaces. Antimicrob Agents Chemother. 2016 Jun 20;60(7):4063-72. doi: 10.1128/AAC.03001-15.

Haisma EM, de Breij A, Chan H, et al. LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents. Antimicrob Agents Chemother. 2014 Aug;58(8):4411-9. doi: 10.1128/AAC.02554-14.

Hazlett L, Wu M. Defensins in innate immunity. Cell Tissue Res. 2011 Jan;343(1):175-88. doi: 10.1007/s00441-010-1022-4.

Heimlich DR, Harrison A, Mason KM. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease. Antibiotics (Basel). 2014 Dec 1;3(4):645-76. doi: 10.3390/antibiotics3040645.

Hirsch JG. Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J Exp Med. 1956 May 1;103(5):589-611. PMID: 13319580.

Hou M, Zhang N, Yang J, et al. Antimicrobial peptide LL-37 and IDR-1 ameliorate MRSA pneumonia in vivo. Cell Physiol Biochem. 2013;32(3):614-23. doi: 10.1159/000354465.

Iacob SA, Iacob DG. Antibacterial function of the human cathelicidin-18 peptide (LL-37) between theory and practice. Protein Pept Lett. 2014;21(12):1247-56. PMID: 25101632.

Isaksson J, Brandsdal BO, Engqvist M, et al. A synthetic antimicrobial peptidomimetic (LTX 109): stereochemical impact on membrane disruption. J Med Chem. 2011 Aug 25;54(16):5786-95. doi: 10.1021/jm200450h.

Jorge P, Lourenço A, Pereira MO. New trends in peptide-based anti-biofilm strategies: a review of recent achievements and bioinformatic approaches. Biofouling. 2012;28(10):1033-61. doi: 10.1080/08927014.2012.728210.

Kang HK, Kim C, Seo CH, Park Y. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J Microbiol. 2017 Jan;55(1):1-12. doi: 10.1007/s12275-017-6452-1.

Karaiskos I, Giamarellou H. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin Pharmacother. 2014 Jul 3; 15(10): 1351-70. doi: 10.1517/14656566.2014.914172.

Kindrachuk J, Napper S. Structure-activity relationships of multifunctional host defence peptides. Mini Rev Med Chem. 2010 Jun;10(7):596-614. doi: 10.2174/138955710791383983.

Kosikowska P, Lesner A. Antimicrobial peptides (AMPs) as drug candidates: a patent review (2003-2015). Expert Opin Ther Pat. 2016 Jun;26(6):689-702. doi: 10.1080/13543776.2016.1176149.

Lecaille F, Lalmanach G, Andrault PM. Antimicrobial proteins and peptides in human lung diseases: A friend and foe partnership with host proteases. Biochimie. 2016 Mar;122:151-68. doi: 10.1016/j.biochi.2015.08.014.

Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci. 2017 Feb 14;11:73. doi: 10.3389/fnins.2017.00073.

Liu S, Fan L, Sun J, Lao X, Zheng H. Computational resources and tools for antimicrobial peptides. J Pept Sci. 2017 Jan;23(1):4-12. doi: 10.1002/psc.2947.

Luo Y, McLean DT, Linden GJ, McAuley DF, McMullan R, Lundy FT. The Naturally Occurring Host Defense Peptide, LL-37, and Its Truncated Mimetics KE-18 and KR-12 Have Selected Biocidal and Antibiofilm Activities Against Candida albicans, Staphylococcus aureus, and Escherichia coli In vitro. Front Microbiol. 2017 Mar 31;8:544. doi: 10.3389/fmicb.2017.00544.

Mackin W.M. Neuprex XOMA Corp. IDrugs. 1998 Oct;1(6):715-23. PMID: 18465627.

Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol. 2016; 6: 194. doi: 10.3389/fcimb.2016.00194.

Malanovic N, Lohner K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals (Basel). 2016 Sep 20;9(3):59. doi: 10.3390/ph9030059.

Mangoni ML, McDermott AM, Zasloff M. Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol. 2016 Mar;25(3):167-73. doi: 10.1111/exd.12929.

Morici P, Fais R, Rizzato C, Tavanti A, Lupetti A. Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11. PLoS One. 2016 Nov 30;11(11):e0167470. doi: 10.1371/journal.pone.0167470.

Morrisey I, Dallow J, Siegwart E, Smith A, Scott R, Korczak B. The activity of PMX-30063 against staphylococci and streptococci. In: 22nd European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). 2012; London. P1458.

Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A. Diversity, evolution and medical applications of insect antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695). pii: 20150290. doi: 10.1098/rstb.2015.0290.

Niyonsaba F, Nagaoka I, Ogawa H, Okumura K. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems. Curr Pharm Des. 2009;15(21):2393-413. doi: 10.2174/138161209788682271.

Ong ZY, Wiradharma N, Yang YY. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv Drug Deliv Rev. 2014 Nov 30;78:28-45. doi: 10.1016/j.addr.2014.10.013.

Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol. 2012 Jun;32(2):143-71. doi: 10.3109/07388551.2011.594423.

Penberthy WT, Chari S, Cole AL, Cole AM. Retrocyclins and their activity against HIV-1. Cell Mol Life Sci. 2011 Jul;68(13):2231-42. doi: 10.1007/s00018-011-0715-5.

Phoenix DA, Dennison SR, Harris F. Antibacterial Peptides. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2013. 231 р. doi: 10.1002/9783527652853.

Pütsep K, Faye I. Hans G Boman (1924-2008): pioneer in peptide-mediated innate immune defence. Scand J Immunol. 2009 Sep;70(3):317-9. doi: 10.1111/j.1365-3083.2009.02293.x.

Ruan Y, Shen T, Wang Y, Hou M, Li J, Sun T. Antimicrobial peptide LL-37 attenuates LTA induced inflammatory effect in macrophages. Int Immunopharmacol. 2013 Mar;15(3):575-80. doi: 10.1016/j.intimp.2013.01.012.

Sahoo BR, Maruyama K, Edula JR, et al. Mechanistic and structural basis of bioengineered bovine Cathelicidin-5 with optimized therapeutic activity. Sci Rep. 2017;7:44781. doi: 10.1038/srep44781.

Sahoo B.R., Fujiwara T. Membrane Mediated Antimicrobial and Antitumor Activity of Cathelicidin 6: Structural Insights from Molecular Dynamics Simulation on Multi-Microsecond Scale. PLoS One. 2016 Jul 8;11(7):e0158702. doi: 10.1371/journal.pone.0158702.

Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI. Primary structures of three human neutrophil defensins. J Clin Invest. 1985 Oct;76(4):1436-9. doi: 10.1172/JCI112121.

Simonetti O, Silvestri C, Arzeni D, et al. In vitro activity of the protegrin IB-367 alone and in combination compared with conventional antifungal agents against dermatophytes.Mycoses. 2014 Apr;57(4):233-9.. doi: 10.1111/myc.12148.

Skarnes RC, Watson DW. Characterization of leukin: an antibacterial factor from leucocytes active against gram-positive pathogens. J Exp Med. 1956 Dec 1;104(6):829-45. PMID: 13376807.

Stange E, Schroeder B, Wehkamp J. Antim icrobial peptides. US Patent, Application number 14/383,549, Publication number WO2013132005 A1. 2015.

Strzelecka P, Czaplinska D, Sadej R, Wardowska A, Pikula M, Lesner A. Simplified, serine-rich theta-defensin analogues as antitumour peptides. Chem Biol Drug Des. 2017 Jul;90(1):52-63. doi: 10.1111/cbdd.12927.

Teng P, Huo D, Nimmagadda A, et al. Small Antimicrobial Agents Based on Acylated Reduced Amide Scaffold. J Med Chem. 2016 Sep 8;59(17):7877-87. doi: 10.1021/acs.jmedchem.6b00640.

Tonk M, Vilcinskas A. The Medical Potential of Antimicrobial Peptides from Insects. Curr Top Med Chem. 2017;17(5):554-75. doi: 10.2174/1568026616666160713123654.

Torres AM, Kuchel PW. The beta-defensin-fold family of polypeptides. Toxicon. 2004 Nov;44(6):581-8. doi: 10.1016/j.toxicon.2004.07.011.

Vandamme D, Landuyt B, Luyten W, Schoofs L. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol. 2012 Nov;280(1):22-35. doi: 10.1016/j.cellimm.2012.11.009.

Verjans ET, Zels S, Luyten W, Landuyt B, Schoofs L. Molecular mechanisms of LL-37-induced receptor activation: An overview. Peptides. 2016 Nov;85:16-26. doi: 10.1016/j.peptides.2016.09.002.

Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence. 2010 Sep-Oct;1(5):440-64. doi: 10.4161/viru.1.5.12983.

Xhindoli D, Pacor S, Benincasa M, Scocchi M, Gennaro R, Tossi A. The human cathelicidin LL-37--A pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta. 2016 Mar;1858(3):546-66. doi: 10.1016/j.bbamem.2015.11.003.

Yin C, Wong JH, Ng TB. Recent studies on the antimicrobial peptides lactoferricin and lactoferrampin. Curr Mol Med. 2014;14(9):1139-54. PMID: 25324002.

Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002 Jan 24;415(6870):389-95. doi: 10.1038/415389a.

Zeya HI, Spitznagel JK. Characterization of cationic protein-bearing granules of polymorphonuclear leukocytes. Lab Invest. 1971 Mar;24(3):229-36. PMID: 4251552.

Zhao L, Lu W. Defensins in innate immunity. Curr Opin Hematol. 2014 Jan;21(1):37-42. doi: 10.1097/MOH.0000000000000005.

Copyright (c) 2017 Zdorov'ye Rebenka - Child`s Health

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2019


   Seo анализ сайта