The role of microRNA in diseases of the biliary system

A.E. Abaturov, V.L. Babich

Abstract


This literature review provides current information about role of microRNA in diseases of the biliary system. For writing the article, we used such databases, as Scopus, Web of Science, MedLine, PubMed, Google Scholar, CyberLeninka, RSCI. The mechanisms of formation and action of microRNA are demonstrated. The data of scientific researches on the association of various microRNAs in the development and progression of diseases of the biliary system are presented. The influence of ursodeoxycholic acid on the expression of microRNA is considered. Attention is focused on the therapeutic efficacy and benefits of using ursodeoxycholic acid in diseases of the biliary system due to the effect on the activity of the generation of some microRNAs.


Keywords


microRNA; diseases of the biliary system; ursodeoxycholic acid; review

References


Unified clinical protocol of medical care for children with diseases of the digestive system: Order of the Ministry of Health of Ukraine № 59 dated January 29, 2013. SOVREMENNAYA PEDIATRIYA. 2013;4:20-31. (in Ukrainian).

Marushko UV, Nagorna KІ, Bryuzgіna TS. Clinical manifestations and fatty acid balance in children with biliary dysfunction and iron deficiency. PERINATOLOGIYA I PEDIATRIYA. 2016;2(66):116-121. doi: 10.15574/PP.2016.66.116. (in Ukrainian).

Shadrin OG, Marushko TL, Radushinskaya TYu, et al. Food intolerance in the pathogenesis of functional gastrointestinal disorders in infants: approaches to diagnosis and treatment. PERINATOLOGIYA I PEDIATRIYA. 2016;1(65):104-111. doi: 10.15574/PP.2016.65.104. (in Ukrainian).

Radchenko VG, Shabrov AV, Zinovieva EN, Sitkin SI. Liver and biliary tract diseases: a guide for doctors. SPb: Spetslit; 2011. 26 p. Russian.

Belousov YuV. Hronichni zahvorjuvannja pechinky, zhovchnogo mihura ta zhovchovyvidnyh shljahiv u ditej (rozshyreni protokol'ni harakterystyky) [Chronic diseases of the liver, gall bladder and biliary tract in children (extended protocol characteristics)]. Kharkiv; 2012.145 p. (in Ukrainian).

Tyazhka OV, Smishchuk VV, Bryuzgina TS. Importance of bile biochemical studies as an indicator of fatty acids, phospholipids and cholesterol metabolic disorders in children with cholelithiasis. PERINATOLOGIYA I PEDIATRIYA. 2015;1(61):63-67. doi: 10.15574/PP.2015.61.63. (in Ukrainian).

Kopin AS, Wheeler MB, Leiter AB. Secretin: structure of the precursor and tissue distribution of the mRNA. Proc Natl Acad Sci U S A. 1990;87(6):2299–2303. PMID: 2315322.

Beinfeld MC. CCK mRNA expression, pro-CCK processing, and regulated secretion of immunoreactive CCK peptides by rat insulinoma (RIN 5F) and mouse pituitary tumor (AtT-20) cells in culture. Neuropeptides. 1992 Aug;22(4):213-7. doi: 10.1016/0143-4179(92)90048-2.

Liddle RA. Regulation of cholecystokinin synthesis and secretion in rat intestine. J Nutr. 1994 Aug;124(8 Suppl):1308S-1314S. PMID:8064378.

Shifeng H, Danni W, Pu Ch, Ping Y, Ju C, Liping  Zh. Circulating liver-specific miR-122 as a novel potential biomarker for diagnosis of cholestatic liver injury. PLoS One. 2013 Sep 27;8(9):e73133. doi: 10.1371/journal.pone.0073133. eCollection 2013.

Tiao M-M, Wang FS, Huang LT, Chuang JH, Kuo HC, Yang YL, Huang YH. MicroRNA-29a protects against acute liver injury in a mouse model of obstructive jaundice via inhibition of the extrinsic apoptosis pathway. Apoptosis. 2014 Jan;19(1):30-41. doi: 10.1007/s10495-013-0909-4.

Katsumi T, Ninomiya M,  Nishina T, et al. MiR-139-5p is associated with inflammatory regulation through c-FOS suppression, and contributes to the progression of primary biliary cholangitis. Lab Invest. 2016 Nov;96(11):1165-1177. doi: 10.1038/labinvest.2016.95.

Li SC, Wang FS, Yang YL, Tiao MM, Chuang JH, Huang YH. Microarray Study of Pathway Analysis Expression Profile Associated with MicroRNA-29a with Regard to Murine Cholestatic Liver Injuries. Int J Mol Sci. 2016 Mar 1;17(3):324. doi: 10.3390/ijms17030324.

Otsuka M, Kishikawa T, Yoshikawa T, et al. MicroRNAs and liver disease. J Hum Genet. 2017 Jan;62(1):75-80. doi: 10.1038/jhg.2016.53.

Sakamoto T, Morishita A, Nomura T, at al. Identification of microRNA profiles associated with refractory primary biliary cirrhosis. Mol Med Rep. 2016 Oct;14(4):3350-6. doi: 10.3892/mmr.2016.5606.

Abaturov AE, Kruchko TA, Agafonova EA, Petrenko LL. Epigeneticheskie osobennosti i mekhanizmy reguliatsii imprintirovannykh genov [Epigenetic features and mechanisms of regulation of imprinted genes]. In: Genomnyi imprinting i imprinting-assotsiirovannye zabolevaniia [Genomic imprinting and imprinting-associated diseases: in 3 vol.]. Kharkiv: Publisher Rozhko SG; 2017. Vol. 2, 256 p. (in Russian).

Bartel DP. MicroRNAs: genomics, biogenesis mechanism, and function. Cell. 2004 Jan 23;116(2):281-97. doi: 10.1016/S0092-8674(04)00045-5.

Finch ML, Marquardt JU, Yeoh GC, Callus BA. Regulation of microRNAs and their role in liver development, regeneration and disease. Int J Biochem Cell Biol. 2014 Sep;54:288-303. doi: 10.1016/j.biocel.2014.04.002.

Jeon TI, Osborne TF. miRNA and cholesterol homeostasis. Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):2041-2046. doi: 10.1016/j.bbalip.2016.01.005.

Letelier P, Riquelme I, Hernández AH, Guzmán N, Farías JG, Roa JC. Circulating MicroRNAs as Biomarkers in Biliary Tract Cancers. Int J Mol Sci. 2016 May;17(5): pii: E791. doi: 10.3390/ijms17050791.

Statistics about the current Human GENCODE Release: version 27 (January 2017 freeze, GRCh38 - Ensembl 90). Available from: https://www.gencodegenes.org/stats/current.html. Accessed: August, 2017.

Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004 Oct 13;23(20):4051-60. doi:10.1038/sj.emboj.7600385.

Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 2007 Jan;8(1):23-36. doi:10.1038/nrm2085.

Kutter C, Svoboda P. miRNA, siRNA, piRNA: Knowns of the unknown. RNA Biol. 2008 Oct-Dec;5(4):181-8. PMID:19182524.

Garzon R, Marcucci G, Croce CM. Targeting MicroRNAs in Cancer: Rationale, Strategies and Challenges. Nat Rev Drug Discov. 2010 Oct;9(10):775-89. doi:10.1038/nrd3179.

Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003 Sep 25;425(6956):415-9. doi:10.1038/nature01957.

Londin E, Loher P, Telonis AG, et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci USA. 2015 Mar;112(10):E1106-15. doi:10.1073/pnas.1420955112.

Shevelev AYa, Kashirina NM, Rutkevich PN, et al. RNA Interference: Target Performance Testing System. Kardiologicheskij Vestnik. 2010;5(2):22-30. (in Russian).

Hayes CN, Chayama K. MicroRNAs as Biomarkers for Liver Disease and Hepatocellular Carcinoma. Int J Mol Sci. 2016 Feb 24;17(3):280. doi:10.3390/ijms17030280.

Hand NJ, Master ZR, Le Lay J, Friedman JR. Hepatic function is preserved in the absence of mature microRNAs. Hepatology. 2009;49(2):618-26. doi:10.1002/hep.22656.

Kerr TA, Korenblat KM, Davidson NM. MicroRNAs and liver disease. Transl Res. 2011 Apr;157(4):241-52. doi: 10.1016/j.trsl.2011.01.008.

Munoz-Garrido P, García-Fernández de Barrena M, Hijona E, et al. MicroRNAs in biliary diseases. World J Gastroenterol. 2012 Nov 21;18(43):6189-96. doi: 10.3748/wjg.v18.i43.6189.

O’Hara SP, Gradilone SA, Masyuk TV, Tabibian JH, LaRusso NF. MicroRNAs in Cholangiopathies. Curr Pathobiol Rep. 2014 Sep 1;2(3):133-142. doi:10.1007/s40139-014-0048-9.

Gradilone SA, O’Hara SP, Masyuk TV, Pisarello MJL, LaRusso NF. MicroRNAs and Benign Biliary Tract Diseases. Semin Liver Dis. 2015 Feb;35(1):26-35. doi:10.1055/s- 0034-1397346.

Esparza-Baquer A, Labiano I, Bujanda L, Perugorria MJ, Banales JM. MicroRNAs in cholangiopathies: Potential diagnostic and therapeutic tools. Clin Res Hepatol Gastroenterol. 2016 Feb;40(1):15-27. doi: 10.1016/j.clinre.2015.10.001.

Kennedy L, Francis H, FanyinMeng F, Glaser S, Alpinia G. Diagnostic and therapeutic potentials of microRNAs in cholangiopathies. Liver Research. 2017;1(1):34-41. doi:10.1016/j.livres.2017.03.003.

Úriz M, Sáez E, Prieto J, Medina JF, Banales JM. Ursodeoxycholic acid is conjugated with taurine to promote secretin-stimulated biliary hydrocholeresis in the normal rat PLoS One. 2011;6(12):e28717. doi: 10.1371/journal.pone.0028717. 

Banales JM, Prieto J, Medina JF. Cholangiocyte anion exchange and biliary bicarbonate excretion. World J Gastroenterol. 2006;12(22):3496-511.  doi:10.3748/wjg.v12.i22.3496.

Rodríguez-Ortigosa CM, Banales JM, Olivas I, et al. Biliary secretion of S-nitrosoglutathione is involved in the hypercholeresis induced by ursodeoxycholic acid in the normal rat. Hepatology. 2010;52(2):667-77. doi: 10.1002/hep.23709.

Marzioni M, Saccomanno S, Candelaresi C, et al. Clinical implications of novel aspects of biliary pathophysiology Dig Liver Dis. 2010 Apr;42(4):238-44. doi: 10.1016/j.dld.2010.01.005. 

Marin JJ, Bujanda L, Banales JM. MicroRNAs and cholestatic liver diseases. Curr Opin Gastroenterol. 2014 May;30(3):303-9. doi: 10.1097/MOG.0000000000000051.

Goldschmidt I, Thum T, Baumann U. Circulating miR-21 and miR-29a as Markers of Disease Severity and Etiology in Cholestatic Pediatric Liver Disease. J Clin Med. 2016 Feb 25;5(3). pii: E28. doi: 10.3390/jcm5030028.

Baillie J. Sphincter of Oddi dysfunction. Curr Gastroenterol Rep. 2010;12(2):130-134.  doi: 10.1007/s11894-010-0096-1.

Smіshhuk VV. Kliniko-patogenetychni mehanizmy rozvytku holelitiazu u ditej ta shljahy jogo zapobigannja: diss kand med nauk [Clinical and pathogenetic mechanisms of cholelithiasis development in children and ways of its prevention: Phd med sci diss]. Kiev; 2015. 22 p. (in Ukrainian).

Abaturov AE. Ursodeoxycholic acid in the practice of a pediatrician. SOVREMENNAYA PEDIATRIYA. 2011;6(40):139-145. (in Russian).

Zaretskyі MM, Chernikova NM, Lobachevskaya TV. The possibilities of ursodeoxycholic acid use in the treatment of cholelithiasis. Suchasna gastroenterologija. 2011;2(58):136-140. (in Russian).

Yaroshevskaya TV, Sapa NB. Use of Ursodeoxycholic Acid for the Treatment of Biliary Dysfunction in Children. Zdorov'ye Rebenka. 2013;2(45):39-42. (in Russian).

Roma MG, Toledo FD, Boaglio AC, Basiglio CL, Crocenzi FA, Sánchez Pozzi EJ. Ursodeoxycholic acid in cholestasis: linking action mechanisms to therapeutic applications. Clinical Science. 2011;121(12):523-544. doi: 10.1042/CS20110184.

Hirschfield GM, Mason A, Luketic V, at al. Efficacy of Obeticholic Acid in Patients With Primary Biliary Cirrhosis and Inadequate Response to Ursodeoxycholic Acid. Gastroenterology. 2015 Apr;148(4):751-61.e8. doi: 10.1053/j.gastro.2014.12.005.

Bode N, Grebeb A, Kerksiekc А, et al. Ursodeoxycholic acid impairs atherogenesis and promotes plaque regression by cholesterol crystal dissolution in mice. Biochemical and Biophysical Research Communications. 2016;478(1):356-62. doi:10.1016/j.bbrc.2016.07.047.

Pearson T, Caporaso JG, Yellowhair M, et al. Abstract A18: Gut microbiota changes in response to treatment with ursodeoxycholic acid (UDCA). Cancer Res. 2017;77(3 Suppl):A18. doi: 10.1158/1538-7445.CRC16-A18.

Loranskaja ID. Funktsional'nye rasstroistva biliarnogo trakta [Functional disorders of the biliary tract]. Moscow: Forte print; 2013. 92 p. (in Russian).

Lindor KD, Kowdley KV, Luketic VA, et al. High Dose Ursodeoxycholic Acid for the Treatment of Primary Sclerosing Cholangitis. Hepatology. 2009 Sep;50(3):808-14. doi:10.1002/hep.23082.

Alpini G, Baiocchi L, Glaser S, et al. Ursodeoxycholate and tauroursodeoxycholate inhibit cholangiocyte growth and secretion of BDL rats through activation of PKC alpha. Hepatology. 2002 May;35(5):1041-52. doi:10.1053/jhep.2002.32712.

Lopez B, Gonzalez A, Hermida N, et al. Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects. Am J Physiol Heart Circ Physiol. 2010 Jul;299(1):H1-9. doi: 10.1152/ajpheart.00335.2010.

Rockey DC. Translating an understanding of the pathogenesis of hepatic fibrosis to novel therapies. Clin Gastroenterol Hepatol. 2013 Mar;11(3):224-31.e1-5. doi: 10.1016/j.cgh.2013.01.005.

Castro RE, Ferreira DM, Zhang X, et al. Identification of microRNAs during rat liver regeneration after partial hepatectomy and modulation by ursodeoxycholic acid. Am J Physiol Gastrointest Liver Physiol. 2010 Oct;299(4):G887-97. doi: 10.1152/ajpgi.00216.2010.

Castro RE, Ferreira DM, Afonso MB, et al. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol. 2013 Jan;58(1):119-25. doi: 10.1016/j.jhep.2012.08.008.

Katsushima F, Takahashi A, Sakamoto N, Kanno Y, Abe K, Ohira H. Expression of micro-RNAs in peripheral blood mononuclear cells from primary biliary cirrhosis patients. Hepatol Res. 2014 Oct;44(10):E189-97. doi: 10.1111/hepr.12198.

Rodrigues PM, Afonso MB, Simão AL, et al. miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice. Cell Death Dis. 2017;8(4):e2748. doi: 10.1038/cddis.2017.172.

Stepniak E, Ricci R, Eferl R, et al. c-Jun/AP-1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity. Genes Dev. 2006 Aug 15;20(16):2306-14. doi:10.1101/gad.390506.

Yang HS, Jansen AP, Nair R, et al. A novel transformation suppressor, Pdcd4, inhibits AP-1 transactivation but not NF-kappaB or ODC transactivation. Oncogene. 2001 Feb 8;20(6):669-76. doi:10.1038/sj.onc.1204137.

Jopling C. Liver-specific microRNA-122: Biogenesis and function. RNA Biol. 2012 Feb;9(2):137-42. doi: 10.4161/rna.18827.

Tsai WC, Hsu PW, Lai TC, et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology. 2009 May;49(5):1571-82. doi: 10.1002/hep.22806.




DOI: https://doi.org/10.22141/2224-0551.12.7.2017.116191

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Zdorov'ye Rebenka - Child`s Health

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2017

 

 Яндекс.МетрикаSeo анализ сайта Рейтинг@Mail.ru