DOI: https://doi.org/10.22141/2224-0551.12.5.2017.109285

Development of the immune response in pneumonia due to Staphylococcus aureus (part 4)

A.E. Abaturov, A.A. Nikulinà

Abstract


In this article, based on the literature sources, the key role of chemokines of CC, CXS families and antimicrobial peptides in the elimination of Staphylococcus aureus is analyzed. The main mechanisms of the anti-staphylococcal activity of catelicidin LL-37 in the development of the immune response in pneumonia caused by Staphylococcus aureus are described in detail.

Keywords


pneumonia; Staphylococcus aureus; immune response; chemokines; antimicrobial peptides; catelicidins

References


Al Alam D, Deslee G, Tournois C, et al. Impaired interleukin-8 chemokine secretion by staphylococcus aureus-activated epithelium and T-cell chemotaxis in cystic fibrosis. Am J Respir Cell Mol Biol. 2010 Jun;42(6):644-50. doi: 10.1165/rcmb.2008-0021OC.

Andersson DI, Hughes D, Kubicek-Sutherland JZ et al. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat. 2016 May;26:43-57. doi: 10.1016/j.drup.2016.04.002.

Arulkumaran N, Unwin RJ, Tam FW. A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases. Expert Opin Investig Drugs. 2011 Jul;20(7):897-915. doi: 10.1517/13543784.2011.578068.

Athale J, Ulrich A, MacGarvey NC, et al. Nrf2 promotes alveolar mitochondrial biogenesis and resolution of lung injury in Staphylococcus aureus pneumonia in mice. Free Radic Biol Med. 2012 Oct 15;53(8):1584-94. doi: 10.1016/j.freeradbiomed.2012.08.009.

Baudelet D, Lipka E, Millet R, Ghinet A. Involvement of the P2X7 purinergic receptor in inflammation: an update of antagonists series since 2009 and their promising therapeutic potential. Curr Med Chem. 2015;22(6):713-29. doi: 10.2174/0929867322666141212120926.

Braff MH, Jones AL, Skerrett SJ, Rubens CE. Staphylococcus aureus exploits cathelicidin antimicrobial peptides produced during early pneumonia to promote staphylokinase-dependent fibrinolysis. J Infect Dis. 2007 May 1;195(9):1365-72. doi: 10.1086/513277.

Chen QX, Song SW, Chen QH et al. Silencing airway epithelial cell-derived hepcidin exacerbates sepsis induced acute lung injury. Crit Care. 2014 Aug 6;18(4):470. doi: 10.1186/s13054-014-0470-8.

Chen X, Niyonsaba F, Ushio H, et al. Synergistic effect of antibacterial agents human beta-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. J Dermatol Sci. 2005 Nov;40(2):123-32. doi: 10.1016/j.jdermsci.2005.03.014.

Chen YG, Zhang Y, Deng LQ, et al. Control of Methicillin-Resistant Staphylococcus aureus Pneumonia Utilizing TLR2 Agonist Pam3CSK4. PLoS One. 2016 Mar 14;11(3):e0149233. doi: 10.1371/journal.pone.0149233.

Chotjumlong P, Bolscher JG, Nazmi K, et al. Involvement of the P2X7 purinergic receptor and c-Jun N-terminal and extracellular signal-regulated kinases in cyclooxygenase-2 and prostaglandin E2 induction by LL-37. J Innate Immun. 2013;5(1):72-83. doi: 10.1159/000342928.

Cohen TS, Hilliard JJ, Jones-Nelson O, et al. Staphylococcus aureus α toxin potentiates opportunistic bacterial lung infections. Sci Transl Med. 2016 Mar 9;8(329):329ra31. doi: 10.1126/scitranslmed.aad9922.

Coorens M, Scheenstra MR, Veldhuizen EJ, Haagsman HP. Interspecies cathelicidin comparison reveals divergence in antimicrobial activity, TLR modulation, chemokine induction and regulation of phagocytosis. Sci Rep. 2017 Jan 19;7:40874. doi: 10.1038/srep40874.

Cowland JB, Johnsen AH, Borregaard N. hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett. 1995 Jul 10;368(1):173-6. doi: 10.1016/0014-5793(95)00634-L.

Dean SN, Bishop BM, van Hoek ML. Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiol. 2011 May 23;11:114. doi: 10.1186/1471-2180-11-114.

Desouza IA, Franco-Penteado CF, Camargo EA, et al. Inflammatory mechanisms underlying the rat pulmonary neutrophil influx induced by airway exposure to staphylococcal enterotoxin type A. Br J Pharmacol. 2005 Nov;146(6):781-91. doi: 10.1038/sj.bjp.0706393.

Dorschner RA, Lopez-Garcia B, Peschel A, et al. The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. FASEB J. 2006 Jan;20(1):35-42. doi: 10.1096/fj.05-4406com.

Fabisiak A, Murawska N, Fichna J. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacol Rep. 2016 Aug;68(4):802-8. doi: 10.1016/j.pharep.2016.03.015.

Flick-Smith HC, Fox MA, Hamblin KA, et al. Assessment of antimicrobial peptide LL-37 as a post-exposure therapy to protect against respiratory tularemia in mice. Peptides. 2013 May;43:96-101. doi: 10.1016/j.peptides.2013.02.024.

Ganz T. Antimicrobial polypeptides in host defense of the respiratory tract. J Clin Invest. 2002 Mar;109(6):693-7. doi: 10.1172/JCI15218.

Girnita A, Zheng H, Grönberg A, Girnita L, Ståhle M. Identification of the cathelicidin peptide LL-37 as agonist for the type I insulin-like growth factor receptor. Oncogene. 2012 Jan 19;31(3):352-65. doi: 10.1038/onc.2011.239.

Golec M. Cathelicidin LL-37: LPS-neutralizing, pleiotropic peptide. Ann Agric Environ Med. 2007;14(1):1-4. PMID: 17655171.

Gupta K, Subramanian H, Ali H. Modulation of host defense peptide-mediated human mast cell activation by LPS. Innate Immun. 2016 Jan;22(1):21-30. doi: 10.1177/1753425915610643.

Gutsmann T. Interaction between antimicrobial peptides and mycobacteria. Biochim Biophys Acta. 2016 May;1858(5):1034-43. doi: 10.1016/j.bbamem.2016.01.031.

Izykowski N, Kuehnel M, Hussein K, et al. Organizing pneumonia in mice and men. J Transl Med. 2016 Jun 10;14(1):169. doi: 10.1186/s12967-016-0933-6.

Jacobsen AS, Jenssen H. Human cathelicidin LL-37 prevents bacterial biofilm formation. Future Med Chem. 2012 Aug;4(12):1587-99. doi: 10.4155/fmc.12.97.

Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695). pii: 20150292. doi: 10.1098/rstb.2015.0292.

Kahlenberg JM, Kaplan MJ. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J Immunol. 2013 Nov 15;191(10):4895-901. doi: 10.4049/jimmunol.1302005.

Karadottir H, Kulkarni NN, Gudjonsson T, et al. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells. Peer J. 2015 Dec 7;3:e1483. doi: 10.7717/peerj.1483.

Kim SH, Lee HY, Jang YS. Expression of the ATP-gated P2X7 Receptor on M Cells and Its Modulating Role in the Mucosal Immune Environment. Immune Netw. 2015 Feb;15(1):44-9. doi: 10.4110/in.2015.15.1.44.

Kraus D, Peschel A. Staphylococcus aureus evasion of innate antimicrobial defense. Future Microbiol. 2008 Aug;3(4):437-51. doi: 10.2217/17460913.3.4.437.

Kubicek-Sutherland JZ, Lofton H, Vestergaard M, et al. Antimicrobial peptide exposure selects for Staphylococcus aureus resistance to human defence peptides. J Antimicrob Chemother. 2017 Jan;72(1):115-27. doi: 10.1093/jac/dkw381.

Kumagai S, Matsui K, Kawaguchi H, et al. Cathelicidin antimicrobial peptide inhibits fibroblast migration via P2X7 receptor signaling. Biochem Biophys Res Commun. 2013 Aug 9;437(4):609-14. doi: 10.1016/j.bbrc.2013.07.010.

Labrousse D, Perret M, Hayez D et al. Kineret®/IL-1ra blocks the IL-1/IL-8 inflammatory cascade during recombinant Panton Valentine Leukocidin-triggered pneumonia but not during S. aureus infection. PLoS One. 2014 Jun 6;9(6):e97546. doi: 10.1371/journal.pone.0097546.

Lai HC, Horng YT, Yeh PF, et al. The assessment of host and bacterial proteins in sputum from active pulmonary tuberculosis. J Microbiol. 2016 Nov;54(11):761-7. doi: 10.1007/s12275-016-6201-x.

Lishko VK, Moreno B, Podolnikova NP, Ugarova TP. Identification of Human Cathelicidin Peptide LL-37 as a Ligand for Macrophage Integrin αMβ2 (Mac-1, CD11b/CD18) that Promotes Phagocytosis by Opsonizing Bacteria. Res Rep Biochem. 2016 Jul 7;2016(6):39-55. PMID: 27990411. NIHMSID: NIHMS80 PMCID: PMC5157691. doi: 10.2147/RRBC.S107070 / ISSN: 2230-3154.

Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol. 2016 Dec 27;6:194. doi: 10.3389/fcimb.2016.00194.

Midorikawa K, Ouhara K, Komatsuzawa H, et al. Staphylococcus aureus susceptibility to innate antimicrobial peptides, beta-defensins and CAP18, expressed by human keratinocytes. Infect Immun. 2003 Jul;71(7):3730-9. doi: 10.1128/IAI.71.7.3730-3739.2003.

Montreekachon P, Chotjumlong P, Bolscher JG, et al. Involvement of P2X(7) purinergic receptor and MEK1/2 in interleukin-8 up-regulation by LL-37 in human gingival fibroblasts. J Periodontal Res. 2011 Jun;46(3):327-37. doi: 10.1111/j.1600-0765.2011.01346.x.

Neumann A, Berends ET, Nerlich A et al. The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps. Biochem J. 2014 Nov 15;464(1):3-11. doi: 10.1042/BJ20140778.

Nijnik A, Hancock RE. The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol. 2009 Jan;16(1):41-7.

Overhage J, Campisano A, Bains M, et al. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008 Sep;76(9):4176-82. doi: 10.1128/IAI.00318-08.

Punde TH, Wu WH, Lien PC, et al. A biologically inspired lung-on-a-chip device for the study of protein-induced lung inflammation. Integr Biol (Camb). 2015 Feb;7(2):162-9. doi: 10.1039/c4ib00239c.

Ravensdale J, Wong Z, O’Brien F, Gregg K. Efficacy of Antibacterial Peptides Against Peptide-Resistant MRSA Is Restored by Permeabilization of Bacteria Membranes. Front Microbiol. 2016 Nov 8;7:1745. doi: 10.3389/fmicb.2016.01745.

Rivas-Santiago B, Hernandez-Pando R, Carranza C, et al. Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells. Infect Immun. 2008 Mar;76(3):935-41. doi: 10.1128/IAI.01218-07.

Rose CE Jr, Sung SS, Fu SM. Significant involvement of CCL2 (MCP-1) in inflammatory disorders of the lung. Microcirculation. 2003 Jun;10(3-4):273-88. doi: 10.1038/sj.mn.7800193.

Schrumpf JA, Amatngalim GD, Veldkamp JB, et al. Pro-inflammatory Cytokines Impair Vitamin D-induced Host Defense in Cultured Airway Epithelial Cells. Am J Respir Cell Mol Biol. 2017 Feb 23;56(6):749-61. doi: 10.1165/rcmb.2016-0289OC.

Scott MG, Davidson DJ, Gold MR et al. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol. 2002 Oct 1;169(7):3883-91. doi: 10.4049/jimmunol.169.7.3883.

Seiler F, Lepper PM, Bals R, Beisswenger C. Regulation and function of antimicrobial peptides in immunity and diseases of the lung. Protein Pept Lett. 2014 Apr;21(4):341-51. doi: 10.2174/09298665113206660100.

Sun J, Dahlén B, Agerberth B, Haeggström JZ. The antimicrobial peptide LL-37 induces synthesis and release of cysteinyl leukotrienes from human eosinophils--implications for asthma. Allergy. 2013 Mar;68(3):304-11. doi: 10.1111/all.12087.

Tang X, Basavarajappa D, Haeggström JZ, Wan M. P2X7 Receptor Regulates Internalization of Antimicrobial Peptide LL-37 by Human Macrophages That Promotes Intracellular Pathogen Clearance. J Immunol. 2015 Aug 1;195(3):1191-201. doi: 10.4049/jimmunol.1402845.

Tecle T, Tripathi S, Hartshorn KL. Review: Defensins and cathelicidins in lung immunity. Innate Immun. 2010 Jun;16(3):151-9. doi: 10.1177/1753425910365734.

Tsou YA, Huang HJ, Lin WW, Chen CY. Investigation of anti-infection mechanism of lactoferricin and splunc-1. Evid Based Complement Alternat Med. 2014;2014:907028. doi: 10.1155/2014/907028.

van der Does AM, Beekhuizen H, Ravensbergen B et al. LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature. J Immunol. 2010 Aug 1;185(3):1442-9. doi: 10.4049/jimmunol.1000376.

Verjans ET, Zels S, Luyten W, et al. Molecular mechanisms of LL-37-induced receptor activation: An overview. Peptides. 2016 Nov;85:16-26. doi: 10.1016/j.peptides.2016.09.002.

Wan M, van der Does AM, Tang X et al. Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages. J Leukoc Biol. 2014 Jun;95(6):971-81. doi: 10.1189/jlb.0513304.

Wan M, Soehnlein O, Tang X, et al. Cathelicidin LL-37 induces time-resolved release of LTB4 and TXA2 by human macrophages and triggers eicosanoid generation in vivo. FASEB J. 2014 Aug;28(8):3456-67. doi: 10.1096/fj.14-251306.

Wang G, Mishra B, Epand RF, Epand RM. High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Biochim Biophys Acta. 2014 Sep;1838(9):2160-72. doi: 10.1016/j. bbamem.2014. 01.016.

Wang XY, Huang ZX, Chen YG, et al. A Multiple Antigenic Peptide Mimicking Peptidoglycan Induced T Cell Responses to Protect Mice from Systemic Infection with Staphylococcus aureus. PLoS One. 2015 Aug 28;10(8):e0136888. doi: 10.1371/journal.pone.0136888. eCollection 2015.

Wolf AJ, Arruda A, Reyes CN et al. Phagosomal degradation increases TLR access to bacterial ligands and enhances macrophage sensitivity to bacteria. J Immunol. 2011 Dec 1;187(11):6002-10. doi: 10.4049/jimmunol.1100232.

Wu H, Zeng М, Cho EY, Jiang W, Sha O. The Origin, Expression, Function and Future Research Focus of a G Protein-coupled Receptor, Mas-related Gene X2 (MrgX2. Prog Histochem Cytochem. 2015 Jul;50(1-2):11-7. doi: 10.1016/j.proghi.2015.06.001.

Yamaguchi Y, Ouchi Y. Antimicrobial peptide defensin: identification of novel isoforms and the characterization of their physiological roles and their significance in the pathogenesis of diseases. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(4):152-66. doi: 10.2183/pjab.88.152.

Zhang Y, Zhu M, Yang Z et al. The human Cathelicidin LL-37 induces MUC5AC mucin production by airway epithelial cells via TACE-TGF-α-EGFR pathway. Exp Lung Res. 2014 Sep;40(7):333-42. doi: 10.3109/01902148.2014.926434.

Zhang Z, Cherryholmes G, Shively JE. Neutrophil secondary necrosis is induced by LL-37 derived from cathelicidin. J Leukoc Biol. 2008 Sep;84(3):780-8. doi: 10.1189/jlb.0208086.

Zurek OW, Pallister KB, Voyich JM. Staphylococcus aureus Inhibits Neutrophil-derived IL-8 to Promote Cell Death. J Infect Dis. 2015 Sep 15;212(6):934-8. doi: 10.1093/infdis/jiv124.




Copyright (c) 2017 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2018

 

   Seo анализ сайта