The place of endogenous antimicrobial peptides in the pathogenetic mechanisms of the development of community-acquired pneumonia caused by Streptococcus pneumoniae among infants

G.O. Lezhenko, O.E. Pashkova, H.V. Kraynya

Abstract


A comprehensive survey was carried out in 30 children with community-acquired pneumonia aged 2 months to 3 years old, among them in 18 children the disease was caused by Streptococcus pneumoniae, and in the remaining 12 patients — by Gram-negative flora. All children underwent the evaluation of the severity of the condition using the PRESS scale, according to which it was found that most patients had severe course of pneumococcal pneumonia. The analysis showed that the development of pneumococcal pneumonia in children occurred against the background of a decrease in the serum content of vitamin D metabolites and the activity of antimicrobial peptides, in contrast to pneumonia caused by Gram-negative pathogens. In the blood serum of children with pneumococcal pneumonia, there was detected a decrease in the content of β1-defensins by 2.6 times, LL-37 — by 3.7 times and human bactericidal permeability-increasing protein — by 2.8 times in comparison with the control group (p < 0.05). It has been proved that inadequate activation of antimicrobial peptides against the background of a deficiency of vitamin D metabolites in infants with pneumonia caused by Streptococcus pneumoniae is one of the pathogenetic links leading to a severe course of the disease.


Keywords


community-acquired pneumonia; Streptococcus pneumoniae; 25-hydroxyvitamin D; β1-defensin; cathelicidin LL-37; bactericidal permeability-increasing protein; infants

References


UNICEF. Pneumonia: The Forgotten Killer of Children; United Nations Children’s Emergency Fund: New York, NY, USA, 2006.A from: http://apps.who.int/iris/bitstream/10665/43640/1/9280640489_eng.pdf

Blasi F, Mantero M, Santus P, Tarsia P. Understanding the burden of pneumococcal disease in adults. Clin Microbiol Infect. 2012;18 (Suppl. 5):7-14. doi: 10.1111/j.1469-0691.2012.03937.

Revai K, McCormick DP, Patel J, Grady JJ, Saeed K, Chonmaitree T, compilers. Effect of pneumococcal conjugate vaccine on nasopharyngeal bacterial colonization during acute otitis media. Pediatrics. 2006;117:1823-9. doi: 10.1086/521833.

Majchrzykiewicz JA, Kuipers OP, Bijlsma JJ. Generic and Specific Adaptive Responses of Streptococcus pneumoniae to Challenge with Three Distinct Antimicrobial Peptides, Bacitracin, LL-37, and Nisin. Antimicrobial agents and chemotherapy. 2010;61(7):440-51. doi: 10.1128/AAC.00769-09.

Lee HY, Andalibi A, Webster P. Antimicrobial activity of innate immune molecules against Streptococcus pneumoniae, Moraxella catarrhalis and nontypeable Haemophilus influenzae. BMC infectious diseases. 2004;4(1):12. doi: 10.1186/1471-2334-4-12.

Yumiko M, Kazuko S, Asako N. Pediatric Respiratory Severity Score (PRESS) for Respiratory Tract Infections in Children. Austin Virol and Retrovirology. 2015;2(1):1009.

ECC Committee, Subcommittees and Task Forces of the American Heart Association. 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2005;112:IV1-203. doi: 10.1161/CIRCULATIONAHA.105.166550.

Pikuza OI, Samorodnova EA. Sovremennyie osobennosti vnebolnichnyih pnevmoniy u detey rannego vozrasta [Contemporary pecularities of community-acquired pneumonia in children of tender age]. Prakticheskaya meditsina. 2013;6(75):35-41.

Charlson ES, Bittinger K, Haas AR. Topographical Continuity of Bacterial Populations in the Healthy Human Respiratory Tract. Amer J Respir and Crit Care Med. 2011;184(8):957-63. doi: 10.1164/rccm.201104-0655OC.

Cantorna MT. Vitamin D and lung infection. Infection and immunity. 2016;84(11):3094-6. doi: 10.1128/IAI.00679-16.

Bergman P, Lindh ÅU, Björkhem-Bergman L, Lindh JD. Vitamin D and respiratory tract infections: a systematic review and meta-analysis of randomized controlled trials. PloS one. 2013;8(6):e65835. doi: 10.1371/journal.pone.0065835.

Pfeffer PE, Hawrylowicz CM. Vitamin D and lung disease. Thorax. 2012;67:1018-20. doi: 10.1136/thoraxjnl-2012-202139.

Subramanian K, Bergman P, Henriques-Normark B. Vitamin D Promotes Pneumococcal Killing and Modulates Inflammatory Responses in Primary Human Neutrophils. Journal of Innate Immunity. 2017;9(4):375-86. doi: 10.1159/000455969.

Olliver M, Spelmink L, Hiew J. Immunomodulatory effects of vitamin D on innate and adaptive immune responses to Streptococcus pneumoniae. The Journal of infectious diseases. 2013;208(9):1474-81. doi: 10.1093/infdis/jit355.

Hansdottir S, Monick MM, Hinde SL. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol. 2008;181(10):7090-9. doi: 10.4049/jimmunol.181.10.7090.

Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266-81. doi: 10.1056/NEJMra070553.

Brennan A, Katz DR, Nunn JD. Dendritic cells from human tissues express receptors for the immunoregulatory vitamin D3 metabolite, dihydroxycholecalciferol. Immunology. 1987;61(4):457-61. PMCID: PMC1453440.

Veldman CM, Cantorna MT, DeLuca HF,. Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem Biophys. 2000;374:334-8. doi: 10.1006/abbi.1999.1605.

Di Rosa M, Malaguarnera M, Nicoletti, F, Malaguarnera L. Vitamin D3: a helpful immuno‐modulator. Immunology. 2011;134(2):123-39. doi: 10.1111/j.1365-2567.2011.03482.x.

Lu YJ, Gross J, Bogaert D. Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLoS Pathog. 2008;4:e1000159. doi.org/10.1371/journal.ppat.1000159.

Sun K, Salmon SL, Lotz SA, Metzger DW. Interleukin-12 promotes gamma interferon-dependent neutrophil recruitment in the lung and improves protection against respiratory Streptococcus pneumoniae infection. Infect Immun. 2007;75:1196-202. doi: 10.1128/IAI.01403-06.

Yin L, Chino T, Horst OV. Differential and coordinated expression of defensins and cytokines by gingival epithelial cells and dendritic cells in response to oral bacteria. BMC immunology. 2010 Jul 9;11:3. doi: 10.1186/1471-2172-11-37.

Mishlanov VYu. Defenziny i drugie protivomikrobnyie peptidy: rol narusheniy beloksinteziruyuschey sposobnosti neytrofilov v patogeneze zabolevaniy organov dyihaniya [Defensins and other antimicrobial peptides and a role of neutrophil protein-synthesing function disorders for pathogenesis of respiratory diseases]. Pulmonologiya. 2014;3:104-12.

Felgentreff K, Beisswenger C, Griese M. The antimicrobial peptide cathelicidin interacts with airway mucus. Peptides. 2006;27(12):3100-6. doi: 10.1016/j.peptides.2006.07.018.

Wang G, Epand RF, Mishra B. Decoding the functional roles of cationic side chains of the major antimicrobial region of human cathelicidin LL-37. Antimicrob Agents Chemother. 2012;56:845-56. doi: 10.1128/AAC.05637-11.

Guinan E, Avigan DE, Soiffer RJ. Pilot experience with opebacan/rBPI 21 in myeloablative hematopoietic cell transplantation. F1000Res. 2015;4:1480. doi: 10.12688/f1000research.7558.1.

Jog NR, Rane MJ, Lominadze G. The actin cytoskeleton regulates exocytosis of all neutrophil granule subsets. Am J Physiology. 2007;292:1690-700. doi: 10.1152/ajpcell.00384.2006.

Horwitz AH, Williams RE, Liu PS, Nadell R. Bactericidal/permeability-increasing protein inhibits growth of a strain of Acholeplasma laidlawii and L forms of the Grampositive bacteria Staphylococcus aureus and Streptococcus pyogenes. Antimicrob Agents Chemother. 1999;43:2314-6. PMCID: PMC89470.

Srivastava A, Casey H, Johnson N. Recombinant bactericidal/permeability-increasing protein rBPI21 protects against pneumococcal disease. Infection and immunity. 2007;75(1):342-9. doi: 10.1128/IAI.01089-06.

Balamayooran G, Batra S, Fessler MB, Happel KI, Jeyaseelan S. Mechanisms of neutrophil accumulation in the lungs against bacteria. Am J Respir Cell Mol Biol. 2010;43(1):5-16. doi: 10.1165/rcmb.2009-0047TR.

Rogan MP, Geraghty P, Greene CM, O'Neill SJ, Taggart CC, McElvaney NG. Antimicrobial proteins and polypeptides in pulmonary innate defence. Respiratory research. 2006;7(1):29. doi: 10.1186/1465-9921-7-29.

Bingle CD, LeClair EE, Havard S. Phylogenetic and evolutionary analysis of the plunc gene family. Protein Sci. 2004 Feb;13(2):422-30. doi: 10.1110/ps.03332704.

Holweg A, Schnare M, Gessner A. The bactericidal/permeability-increasing protein (BPI) in the innate defence of the lower airways. 2011;39(4):1045-50. doi: 10.1042/BST0391045.




DOI: https://doi.org/10.22141/2224-0551.12.4.2017.107626

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2017

 

 Яндекс.МетрикаSeo анализ сайта Рейтинг@Mail.ru