Development of the immune response in pneumonia due to Staphylococcus aureus (part 2)

A.E. Abaturov, A.A. Nikulinа

Abstract


The article analyzes the role of pattern-recognition receptors involved in recognition of pathogen-associated molecular patterns of Staphylococcus aureus. There are shown the basic operation of macrophage and monocyte NLRP3, NLRC5, NLRP7, AIM2 inflammasomes that form the active forms of pro-inflammatory cytokines IL-1-beta and IL-18 du-ring the development of pneumonia caused by Staphylococcus aureus.

Keywords


pneumonia; Staphylococcus aureus; immune response, pattern-recognition receptors; inflammasome

References


Anas A, van der Poll T, de Vos AF. (2010). Role of CD14 in lung inflammation and infection. Crit Care. 2010;14(2):209. doi: 10.1186/cc8850.

Armbruster NS, Richardson JR, Schreiner J et al.. PSM Peptides of Staphylococcus aureus Activate the p38-CREB Pathway in Dendritic Cells, Thereby Modulating Cytokine Production and T Cell Priming. J Immunol. 2016 Feb 1;196(3):1284-92. doi: 10.4049/jimmunol.1502232.

Armbruster NS, Richardson JR, Schreiner J, et al. Staphylococcus aureus PSM peptides induce tolerogenic dendritic cells upon treatment with ligands of extracellular and intracellular TLRs. Int J Med Microbiol. 2016 Dec;306(8):666-74. doi: 10.1016/j.ijmm.2016.09.002.

Barbar SD, Pauchard LA, Bruyère R et al. Mechanical Ventilation Alters the Development of Staphylococcus aureus Pneumonia in Rabbit. PLoS One. 2016 Jul 8;11(7):e0158799. doi: 10.1371/journal.pone.0158799.

Becker RE, Berube BJ, Sampedro GR et al. Tissue-specific patterning of host innate immune responses by Staphylococcus aureus α-toxin. J Innate Immun. 2014;6(5):619-31. doi: 10.1159/000360006.

Bekeredjian-Ding I, Stein C, Uebele J. The Innate Immune Response Against Staphylococcus aureus. Curr Top Microbiol Immunol. 2015 Dec 15. doi: 10.1007/82_2015_5004.

Bergstrøm B, Aune MH, Awuh JA et al. TLR8 Senses Staphylococcus aureus RNA in Human Primary Monocytes and Macrophages and Induces IFN-β Production via a TAK1-IKKβ-IRF5 Signaling Pathway. J Immunol. 2015 Aug 1;195(3):1100-11. doi: 10.4049/jimmunol.1403176.

Bhan U, Lukacs NW, Osterholzer JJ et al. TLR9 is required for protective innate immunity in Gram-negative bacterial pneumonia: role of dendritic cells. J Immunol. 2007 Sep 15;179(6):3937-46. doi: 10.4049/jimmunol. 179.6.3937.

Bjerkan L, Sonesson A, Schenck K. Multiple Functions of the New Cytokine-Based Antimicrobial Peptide Thymic Stromal Lymphopoietin (TSLP). Pharmaceuticals (Basel). 2016 Jul 5;9(3):41. pii: E41. doi: 10.3390/ph9030041.

Byndloss MX, Keestra-Gounder AM, Bäumler AJ, Tsolis RM. NOD1 and NOD2: New Functions Linking Endoplasmic Reticulum Stress and Inflammation. DNA Cell Biol. 2016 Jul;35(7):311-3. doi: 10.1089/dna.2016.3396.

Caruso R, Warner N, Inohara N, Núñez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity. 2014 Dec 18;41(6):898-908. doi: 10.1016/j.immuni.2014.12.010.

Chamaillard M, Giraridn SE, Viala J, Philpott DJ. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell Microbiol. 2003 Sep;5(9):581-92. doi: 10.1046/j.1462-5822.2003.00304.x.

Chantratita N, Tandhavanant S, Seal S et al. TLR4 genetic variation is associated with inflammatory responses in Gram-positive sepsis. Clin Microbiol Infect. 2017 Jan;23(1):47.e1-47.e10. doi: 10.1016/j.cmi.2016.08.028.

Chen YG, Zhang Y, Deng LQ еt al. Control of Methicillin-Resistant Staphylococcus aureus Pneumonia Utilizing TLR2 Agonist Pam3CSK4. PLoS One. 2016 Mar 14;11(3):e0149233. doi: 10.1371/journal.pone.0149233.

Choubey D, Panchanathan R. Absent in Melanoma 2 proteins in SLE. Clin Immunol. 2017 Jan 3;176:42-48. doi: 10.1016/j.clim.2016.12.011.

Conejeros I, Gibson AJ, Werling D et al. Effect of the synthetic Toll-like receptor ligands LPS, Pam3CSK4, HKLM and FSL-1 in the function of bovine polymorphonuclear neutrophils. Dev Comp Immunol. 2015 Oct;52(2):215-25. doi: 10.1016/j.dci.2015.05.012.

Craven RR, Gao X, Allen IC et al. Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS One. 2009 Oct 14;4(10):e7446. doi: 10.1371/journal.pone.0007446.

Davis BK, Roberts RA, Huang MT et al. Cutting edge: NLRC5-dependent activation of the inflammasome. J Immunol. 2011 Feb 1;186(3):1333-7. doi: 10.4049/jimmunol.1003111.

Dempsey A, Bowie AG. Innate immune recognition of DNA: A recent history. Virology. 2015 May;479-480:146-52. doi: 10.1016/j.virol.2015.03.013.

Dinarello CA. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur J Immunol. 2011 May;41(5):1203-17. doi: 10.1002/eji. 201141550.

Duggan JM, You D, Cleaver JO. Synergistic interactions of TLR2/6 and TLR9 induce a high level of resistance to lung infection in mice. J Immunol. 2011 May 15;186(10):5916-26. doi: 10.4049/jimmunol.1002122.

DuMont AL, Yoong P, Liu X, et al. Identification of a crucial residue required for Staphylococcus aureus LukAB cytotoxicity and receptor recognition. Infect Immun. 2014 Mar;82(3):1268-76. doi: 10.1128/IAI.01444-13.

DuMont AL, Yoong P, Day CJ, et al. Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10794-9. doi: 10.1073/pnas.1305121110.

DuMont AL, Torres VJ. Cell targeting by the Staphylococcus aureus pore-forming toxins: it's not just about lipids. Trends Microbiol. 2014 Jan;22(1):21-7. doi: 10.1016/j.tim.2013.10.004.

Ezekwe EA Jr, Weng C, Duncan JA. ADAM10 Cell Surface Expression but Not Activity Is Critical for Staphylococcus aureus α-Hemolysin-Mediated Activation of the NLRP3 Inflammasome in Human Monocytes. Toxins (Basel). 2016 Mar 30;8(4):95. doi: 10.3390/toxins8040095.

Fioravanti J, Medina-Echeverz J, Berraondo P. Scavenger receptor class B, type I: a promising immunotherapy target. Immunotherapy. 2011 Mar;3(3):395-406. doi: 10.2217/imt.10.104.

Fisher JF, Mobashery S. Host-guest chemistry of the peptidoglycan. J Med Chem. 2010 Jul 8;53(13):4813-29. doi: 10.1021/jm100086u.

Fournier B. The function of TLR2 during staphylococcal diseases. Front Cell Infect Microbiol. 2013 Jan 4;2:167. doi: 10.3389/fcimb.2012.00167.

Fournier B, Philpott DJ. Recognition of Staphylococcus aureus by the innate immune system. Clin Microbiol Rev. 2005 Jul;18(3):521-40. doi: 10.1128/CMR.18.3.521-540.2005.

González-Zorn B, Senna JP, Fiette L et al. Bacterial and host factors implicated in nasal carriage of methicillin-resistant Staphylococcus aureus in mice. Infect Immun. 2005 Mar;73(3):1847-51. doi: 10.1128/IAI.73.3.1847-1851.2005.

Hanamsagar R, Aldrich A, Kielian T. Critical role for the AIM2 inflammasome during acute CNS bacterial infection. J Neurochem. 2014 May;129(4):704-11. doi: 10.1111/jnc.12669.

Hattar K, Grandel U, Moeller A et al. Lipoteichoic acid (LTA) from Staphylococcus aureus stimulates human neutrophil cytokine release by a CD14-dependent, Toll-like-receptor-independent mechanism: Autocrine role of tumor necrosis factor-[alpha] in mediating LTA-induced interleukin-8 generation. Crit Care Med. 2006 Mar;34(3):835-41. PMID: 16521278.

Haziot A, Hijiya N, Schultz K et al. CD14 plays no major role in shock induced by Staphylococcus aureus but down-regulates TNF-alpha production. J Immunol. 1999 Apr 15;162(8):4801-5. PMID: 10202023.

Hermann C, Spreitzer I, Schröder NW et al. Cytokine induction by purified lipoteichoic acids from various bacterial species--role of LBP, sCD14, CD14 and failure to induce IL-12 and subsequent IFN-gamma release. Eur J Immunol. 2002 Feb;32(2):541-51. doi: 10.1002/1521-4141(200202)32:2< 541:AID-IMMU541>3.0.CO;2-P.

Hilmi D, Parcina M, Stollewerk D et al. Heterogeneity of host TLR2 stimulation by Staphylocoocus aureus isolates. PLoS One. 2014 May 8;9(5):e96416. doi: 10.1371/journal.pone.0096416.

Hoebe K, Georgel P, Rutschmann S et al. CD36 is a sensor of diacylglycerides. Nature. 2005 Feb 3;433(7025):523-7. doi: 10.1038/nature03253.

Holm CK, Paludan SR, Fitzgerald KA. DNA recognition in immunity and disease. Curr Opin Immunol. 2013 Feb;25(1):13-8. doi: 10.1016/j.coi.2012.12.006.

Holzinger D, Gieldon L, Mysore V et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol. 2012 Nov;92(5):1069-81. doi: 10.1189/jlb.0112014.

Howrylak JA, Nakahira K. Inflammasomes: Key Mediators of Lung Immunity. Annu Rev Physiol. 2017 Feb 10;79:471-494. doi: 10.1146/annurev-physiol-021115-105229.

Inden K, Kaneko J, Miyazato A, et al. Toll-like receptor 4-dependent activation of myeloid dendritic cells by leukocidin of Staphylococcus aureus. Microbes Infect. 2009 Feb;11(2):245-53. doi: 10.1016/j.micinf. 2008.11.013.

Irvine KL, Hopkins LJ, Gangloff M, Bryant CE. The molecular basis for recognition of bacterial ligands at equine TLR2, TLR1 and TLR6. Vet Res. 2013 Jul 4;44:50. doi: 10.1186/1297-9716-44-50.

Janowski AM, Sutterwala FS. Atypical Inflammasomes. Methods Mol Biol. 2016;1417:45-62. doi: 10.1007/978-1-4939-3566-6_2.

Jiang KF, Zhoa G, Deng GZ et al. Polydatin ameliorates Staphylococcus aureus-induced mastitis in mice via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB pathway. Acta Pharmacol Sin. 2017 Feb;38(2):211-22. doi: 10.1038/aps.2016.123.

Juárez-Verdayes MA, Rodríguez-Martínez S, Cancino-Diaz ME, Cancino-Diaz JC. Peptidoglycan and muramyl dipeptide from Staphylococcus aureus induce the expression of VEGF-A in human limbal fibroblasts with the participation of TLR2-NFκB and NOD2-EGFR. Graefes Arch Clin Exp Ophthalmol. 2013 Jan;251(1):53-62. doi: 10.1007/s00417-012-2130-5.

Kang SS, Sim JR, Yun CH, Han SH. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Arch Pharm Res. 2016 Nov;39(11):1519-29. doi: 10.1007/s12272-016-0804-y.

Kapetanovic R, Jouvion G, Fitting C et al. Contribution of NOD2 to lung inflammation during Staphylococcus aureus-induced pneumonia. Microbes Infect. 2010 Sep;12(10):759-67. doi: 10.1016/j.micinf.2010.05.003.

Kapetanovic R, Nahori MA, Balloy V et al. Contribution of phagocytosis and intracellular sensing for cytokine production by Staphylococcus aureus-activated macrophages. Infect Immun. 2007 Feb;75(2):830-7. doi: 10.1128/IAI.01199-06.

Kebaier C, Chamberland RR, Alnle IC et al. Staphylococcus aureus α-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome. J Infect Dis. 2012 Mar 1;205(5):807-17. doi: 10.1093/infdis/jir846.

Khare S, Dorfleutner A, Bryan NB et al. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity. 2012 Mar 23;36(3):464-76. doi: 10.1016/j.immuni. 2012.02.001.

Kim MR, Hong SW, Choi EB et al. Staphylococcus aureus-derived extracellular vesicles induce neutrophilic pulmonary inflammation via both Th1 and Th17 cell responses. Allergy. 2012 Oct;67(10):1271-81. doi: 10.1111/all.12001.

Knuefermann P, Sakata Y, Baker JS, et al. Toll-like receptor 2 mediates Staphylococcus aureus-induced myocardial dysfunction and cytokine production in the heart. Circulation. 2004 Dec 14;110(24):3693-8. doi: 10.1161/01.CIR.0000143081.13042.04.

Kobayashi KS, Chamaillard M, Ogura Y, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 2005 Feb 4;307(5710):731-4. doi: 10.1126/science.1104911.

Kretschmer D, Gleske AK, Rautenberg M et al. Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe. 2010 Jun 25;7(6):463-73. doi: 10.1016/j.chom.2010.05.012.

Kretschmer D, Hanzelmann D, Peschel A. Lipoprotein immunoproteomics question the potential of Staphylococcus aureus TLR2 agonists as vaccine antigens. Proteomics. 2016 Oct;16(20):2603-4. doi: 10.1002/pmic.201600351.

Krüger A, Oldenburg M, Chebrolu C et al. Human TLR8 senses UR/URR motifs in bacterial and mitochondrial RNA. EMBO Rep. 2015 Dec;16(12):1656-63. doi: 10.15252/embr.201540861.

Kumagai Y, Takeuchi O, Akira S. TLR9 as a key receptor for the recognition of DNA. Adv Drug Deliv Rev. 2008 Apr 29;60(7):795-804. doi: 10.1016/j.addr.2007.12.004.

Kurokawa K, Gong JH, Ryu KH et al. Biochemical characterization of evasion from peptidoglycan recognition by Staphylococcus aureus D-alanylated wall teichoic acid in insect innate immunity. Dev Comp Immunol. 2011 Aug;35(8):835-9. doi: 10.1016/j.dci.2011.03.001.

Kurokawa K, Kim MS, Ichikawa R еt al. Environment-mediated accumulation of diacyl lipoproteins over their triacyl counterparts in Staphylococcus aureus. J Bacteriol. 2012 Jul;194(13):3299-306. doi: 10.1128/JB.00314-12.

Kurokawa K, Lee H, Roh KB, et al. The Triacylated ATP Binding Cluster Transporter Substrate-binding Lipoprotein of Staphylococcus aureus Functions as a Native Ligand for Toll-like Receptor 2. J Biol Chem. 2009 Mar 27;284(13):8406-11. doi: 10.1074/jbc.M809618200.

Lamkanfi M, Mueller JL, Vitari AC et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol. 2009 Oct 5;187(1):61-70. doi: 10.1083/jcb.200903124.

Lee IT, Lin CC, Hsu CK et al. Resveratrol inhibits Staphylococcus aureus-induced TLR2/MyD88/NF-κB-dependent VCAM-1 expression in human lung epithelial cells. Clin Sci (Lond). 2014 Sep;127(6):375-90. doi: 10.1042/CS20130816.

Leech JM, Lacey KA, Mulcahy ME et al. IL-10 Plays Opposing Roles during Staphylococcus aureus Systemic and Localized Infections. J Immunol. 2017 Feb 6. pii: 1601018. doi: 10.4049/jimmunol.1601018.

Leissinger M, Kulkarni R, Zemans RL et al. Investigating the role of nucleotide-binding oligomerization domain-like receptors in bacterial lung infection. Am J Respir Crit Care Med. 2014 Jun 15;189(12):1461-8. doi: 10.1164/rccm.201311-2103PP.

Lembo A, Kalis C, Kirschning CJ, et al. Differential contribution of Toll-like receptors 4 and 2 to the cytokine response to Salmonella enterica serovar Typhimurium and Staphylococcus aureus in mice. Infect Immun. 2003 Oct;71(10):6058-62. doi: 10.1128/IAI.71.10.6058-6062.2003.

Liu B, Fu Y, Feng S et al. Involvement of RP105 and toll-like receptors in the activation of mouse peritoneal macrophages by Staphylococcus aureus. Scand J Immunol. 2013 Jul;78(1):8-16. doi: 10.1111/sji.12050.

Luecke S, Paludan SR. Innate recognition of alphaherpesvirus DNA. Adv Virus Res. 2015;92:63-100. doi: 10.1016/bs.aivir.2014.11.003.

Lupfer C, Kanneganti TD. Unsolved Mysteries in NLR Biology. Front Immunol. 2013 Sep 17;4:285. doi: 10.3389/fimmu.2013.00285.

Maharana J, Dehury B, Sahoo JR et al. Structural and functional insights into CARDs of zebrafish (Danio rerio) NOD1 and NOD2, and their interaction with adaptor protein RIP2. Mol Biosyst. 2015 Aug;11(8):2324-36. doi: 10.1039/c5mb00212e.

McLaughlin RA, Hoogewerf AJ. Interleukin-1beta-induced growth enhancement of Staphylococcus aureus occurs in biofilm but not planktonic cultures. Microb Pathog. 2006 Aug-Sep; 41(2-3):67-79. doi: 10.1016/j.micpath.2006.04.005.

Meduri GU, Kanangat S, Stefan J, Tolley E, Schaberg D. Cytokines IL-1beta, IL-6, and TNF-alpha enhance in vitro growth of bacteria. Am J Respir Crit Care Med. 1999 Sep;160(3):961-7. doi: 10.1164/ajrccm.160.3. 9807080.

Melehani JH, James DB, DuMont AL, Torres VJ, Duncan JA. Staphylococcus aureus Leukocidin A/B (LukAB) Kills Human Monocytes via Host NLRP3 and ASC when Extracellular, but Not Intracellular. PLoS Pathog. 2015 Jun 12;11(6):e1004970. doi: 10.1371/journal.ppat.1004970.

Melehani JH, Duncan JA. Inflammasome Activation Can Mediate Tissue-Specific Pathogenesis or Protection in Staphylococcus aureus Infection. Curr Top Microbiol Immunol. 2016;397:257-82. doi: 10.1007/978-3-319-41171-2_13.

Miller LS, O'Connell RM, Gutierrez MA et al. MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity. 2006 Jan;24(1):79-91. doi: 10.1016/j. immuni.2005.11.011.

Mohamed W, Domann E, Chakraborty T et al. TLR9 mediates S. aureus killing inside osteoblasts via induction of oxidative stress. BMC Microbiol. 2016 Oct 3;16(1):230. PMID: 27716055. doi: 10.1186%2Fs12866-016-0855-8.

Mullaly SC, Kubes P. The role of TLR2 in vivo following challenge with Staphylococcus aureus and prototypic ligands. J Immunol. 2006 Dec 1;177(11):8154-63.doi: 10.4049/jimmunol.177.11.8154.

Negrini TC, Arthur RA, Waeiss RA et al. Salivary epithelial cells as model to study immune response against cutaneous pathogens. Clin Transl Sci. 2014 Feb;7(1):48-51. doi: 10.1111/cts.12113.

Nguyen MT, Kraft B, Yu W et al. The νSaα Specific Lipoprotein Like Cluster (lpl) of S. aureus USA300 Contributes to Immune Stimulation and Invasion in Human Cells. PLoS Pathog. 2015 Jun 17;11(6):e1004984. doi: 10.1371/journal.ppat.1004984.

Niebuhr M, Schorling K, Heratizadeh A, Werfel T. Staphylococcal α-toxin induces a functional upregulation of TLR-2 on human peripheral blood monocytes. Exp Dermatol. 2015May;24(5):381-3. doi: 10.1111/exd.12674.

Nilsen NJ, Deininger S, Nonstad U et al. Cellular trafficking of lipoteichoic acid and Toll-like receptor 2 in relation to signaling: role of CD14 and CD36. J Leukoc Biol. 2008 Jul;84(1):280-91. doi: 10.1189/jlb.0907656.

Parker D, Prince A. Staphylococcus aureus induces type I IFN signaling in dendritic cells via TLR9. J Immunol. 2012 Oct 15;189(8):4040-6. doi: 10.4049/jimmunol.1201055.

Peschel A, Otto M. Phenol-soluble modulins and staphylococcal infection. Nat Rev Microbiol. 2013 Oct;11(10):667-73. doi: 10.1038/nrmicro3110.

Pietrocola G, Arciola CR, Rindi S, et al. Toll-like receptors (TLRs) in innate immune defense against Staphylococcus aureus. Int J Artif Organs. 2011 Sep;34(9):799-810. doi: 10.5301/ijao.5000030.

Radian AD, Khare S, Chu LH et al. ATP binding by NLRP7 is required for inflammasome activation in response to bacterial lipopeptides. Mol Immunol. 2015 Oct;67(2 Pt B):294-302. doi: 10.1016/j.molimm.2015.06.013.

Siegel SJ, Weiser JN. Mechanisms of Bacterial Colonization of the Respiratory Tract. Annu Rev Microbiol. 2015;69:425-44. doi: 10.1146/annurev-micro-091014-104209.

Sokolovska A, Becker CE, Ip WK, et al. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat Immunol. 2013 Jun;14(6):543-53. doi: 10.1038/ni.2595.

Sugitharini V, Shahana P, Prema A, Berla Thangam E. TLR2 and TLR4 co-activation utilizes distinct signaling pathways for the production of Th1/Th2/Th17 cytokines in neonatal immune cells. Cytokine. 2016 Sep;85:191-200. doi: 10.1016/j.cyto.2016.06.024.

Sun Y, Hise AG, Kalsow CM, Pearlman E. Staphylococcus aureus-induced corneal inflammation is dependent on Toll-like receptor 2 and myeloid differentiation factor 88. Infect Immun. 2006 Sep;74(9):5325-32. doi: 10.1128/IAI.00645-06.

Szweda P, Schielmann M, Kotlowski R, et al. Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. Appl Microbiol Biotechnol. 2012 Dec;96(5):1157-74. doi: 10.1007/s00253-012-4484-3.

Takeuchi O, Hoshino K, Akira S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol. 2000 Nov 15;165(10):5392-6. doi: 10.4049/jimmunol.165.10. 5392.

van der Meer AJ, Achouiti A, van der Ende A, et al. Toll-like receptor 9 enhances bacterial clearance and limits lung consolidation in murine pneumonia caused by methicillin resistant Staphylococcus aureus. Mol Med. 2016 Jun 24;22. doi: 10.2119/molmed.2015.00242.

von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med. 2001 Jan 4;344(1):11-6. doi: 10.1056/NEJM200101043440102.

Vu AT, Baba T, Chen X et al. Staphylococcus aureus membrane and diacylated lipopeptide induce thymic stromal lymphopoietin in keratinocytes through the Toll-like receptor 2-Toll-like receptor 6 pathway. J Allergy Clin Immunol. 2010 Nov;126(5):985-93.e1-3. doi: 10.1016/j.jaci.2010.09.002.

Wang R, Braughton KR, Kretschmer D et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med. 2007 Dec;13(12):1510-4. doi: 10.1038/nm1656.

Wiese KM, Coates BM, Ridge KM. The Role of NOD-like Receptors in Pulmonary Infection. Am J Respir Cell Mol Biol. 2017 Feb 3. doi: 10.1165/rcmb.2016-0375TR.

Wolf AJ, Arruda A, Reyes CN, et al. Phagosomal degradation increases TLR access to bacterial ligands and enhances macrophage sensitivity to bacteria. J Immunol. 2011 Dec 1;187(11):6002-10. doi: 10.4049/jimmunol.1100232.

Wu HM, Wang J, Zhang В, et al. CpG-ODN promotes phagocytosis and autophagy through JNK/P38 signal pathway in Staphylococcus aureus-stimulated macrophage. Life Sci. 2016 Sep 15;161:51-9. doi: 10.1016/j.lfs.2016.07.016.

Wu J, Ding Y, Bi Y et al. Staphylococcus aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB transcription factors in bovine mammary gland fibroblasts. Microb Pathog. 2016 Jun;95:7-14. doi: 10.1016/j.micpath.2016.02.013.

Wu J, Chen ZJ. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol. 2014;32:461-88. doi: 10.1146/annurev-immunol-032713-120156.

Yao Y, Qian Y. Expression regulation and function of NLRC5. Protein Cell. 2013 Mar;4(3):168-75. doi: 10.1007/s13238-012-2109-3.

Zhu YM, Miao JF, Fan HJ, Zou SX, Chen WH. Protective effect of CpG-DNA against mastitis induced by Staphylococcus aureus infection in a rat model. Int Immunopharmacol. 2007 Apr;7(4):435-43. PMID: 17321466. doi: 10.1016/j.intimp.2006.10.008.

Zivkovic A, Sharif O, Stich K et al. TLR 2 and CD14 mediate innate immunity and lung inflammation to staphylococcal Panton-Valentine leukocidin in vivo. J Immunol. 2011 Feb 1;186(3):1608-17. doi: 10.4049/jimmunol.1001665.




DOI: https://doi.org/10.22141/2224-0551.12.3.2017.104236

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2017

 

 Яндекс.МетрикаSeo анализ сайта Рейтинг@Mail.ru