Mechanisms of inactivation of activated oxygen-containing metabolites by the antioxidant system of the respiratory tract

A.E. Abaturov, A.P. Volosovets, T.P. Borysova

Abstract


The literature review presents the current data about various mechanisms of the respiratory antioxidant system to inactivate the oxygen-containing metabolites and the characteristics of oxidation-reduction reactions. The development of oxidative stress in the respiratory tract tissue, the distribution of generation fluxes of radical and non-radical activated oxygena-ted metabolites, the rate of inactivation of hydrogen peroxide by various mechanisms of the antioxidant system are discussed in detail. The value of the standard redox potential of biologically significant redox couples is presented. Molecular pathways of oxidative stress are described.


Keywords


antioxidant system; respiratory tract; mechanisms of inactivation of activated oxygen-containing metabo- lites

References


Morozov IV, Boltalin AI, Karpova EV. Okislitel'no-vosstanovitel'nye processy. Uchebnoe posobie [Oxidative and reparative processes. Textbook]. Moscow: Izdatel'stvo Moskovskogo universiteta; 2003. 79 p. (In Russian).

Sutiagina GN, Dubova NM, Chernova EE. Analiticheskaja himija. Uchebnoe posobie [Analytical chemistry. Textbook]. Moscow Society of Professional Education of RF. Tomsk: Politehnicheskij universitet; 1998. Vol. 1. 123 p.

Adimora NJ, Jones DP, Kemp ML. A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxid Redox Signal. 2010;13(6):731-43. doi: 10.1089/ars.2009.2968.

Fisher AB, Dodia C, Feinstein SI, Ho YS. Altered lung phospholipid metabolism in mice with targeted deletion of lysosomal-type phospholipase A2. J Lipid. Res. 2005;46(6):1248-56. doi: 10.1194/jlr.M400499-JLR200.

Ciencewicki J. Trivedi S, Kleeberger SR. Oxidants and the pathogenesis of lung diseases. J Allergy Clin. Immunol. 2008;122(3):456-68. doi: 10.1016/j.jaci.2008.08.004.

Curjuric I, Imboden M, Nadif R, et al. Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population. One. 2012;7(7):e40175. doi: 10.1371/journal.pone.0040175. Epub 2012 Jul 6.

Morris AA, Zhao L, Patel RS, et al. Differences in Systemic Oxidative Stress Based on Race and the Metabolic Syndrome: The Morehouse and Emory Team up to Eliminate Health Disparities (META-Health) Study. Metab Syndr Relat Disord. 2012;10(4):252-9. doi: 10.1089/met.2011.0117. Epub 2012 Mar 2.

Balakrishna S, Saravia J, Thevenot P, et al. Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs. Part Fibre Toxicol. 2011;8:11. doi: 10.1186/1743-8977-8-11.

Kumar C, Igbaria A, D’Autreaux B, et al. Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J. 2011;30(10):2044-56. doi: 10.1038/emboj.2011.105. Epub 2011 Apr 8.

Go YM, Jones DP. Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta. 2008;1780(11):1273-90. doi: 10.1016/j.bbagen.2008.01.011. Epub 2008 Jan 26.

Go YM, Jones DP. Redox control systems in the nucleus: mechanisms and functions. Antioxid Redox Signal. 2010;13(4):489-509. doi: 10.1089/ars.2009.3021.

Jones D.P. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol. 2008;295(4):C849-C868. doi: 10.1152/ajpcell.00283.2008. Epub 2008 Aug 6.

Jones DP, Go YM. Redox compartmentalization and cellular stress. Diabetes Obes. Metab. 2010;12(Suppl 2):116-25. doi: 10.1111/j.1463-1326.2010.01266.x.

Kemp M, Go YM, Jones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med. 2008;44(6):921-37. doi: 10.1016/j.freeradbiomed.2007.11.008.

Kim SY, Chun E, Lee KY. Phospholipase A(2) of peroxiredoxin 6 has a critical role in tumor necrosis factor-induced apoptosis. Cell Death Differ. 2011;18(10):1573-83. doi: 10.1038/cdd.2011.21. Epub 2011 Mar 18.

Krutilina RI, Kropotov AV, Leutenegger C, Serikov VB. Migrating leukocytes are the source of peroxiredoxin V during inflammation in the airways. J Inflamm (Lond). 2006;3:13. doi: 10.1186/1476-9255-3-13.

Moran LK, Gutteridge JM, Quinlan GJ. Thiols in cellular redox signalling and control. Curr Med Chem. 2001;8(7):763-72. PMID: 11375748.

Chatterjee S, Feinstein SI, Dodia C, et al. Peroxiredoxin 6 phosphorylation and subsequent phospholipase A2 activity are required for agonist-mediated activation of NADPH oxidase in mouse pulmonary microvascular endothelium and alveolar macrophages. J Biol Chem. 2011 Apr;286(13):11696-706. doi: 10.1074/jbc.M110.206623. Epub 2011 Jan 24.

Go YM, Duong DM, Peng J, Jones DP. Protein Cysteines Map to Functional Networks According to Steady-state Level of Oxidation. J Proteomics Bioinform. 2011;4(10):196-209. doi: 10.4172/jpb.1000190.

Yang D, Bai CX, Wang X, et al. Roles of peroxiredoxin 6 in the regulation of oxidative stress to lipopolysaccharide-induced acute lung injury. Zhonghua Jie He He Hu Xi Za Zhi. 2011;34(9):679-83. (In Chinese). PMID:22177494.

Go YM, Ziegler TR, Johnson J, et al. Selective protection of nuclear thioredoxin-1 and glutathione redox systems against oxidation during glucose and glutamine deficiency in human colonic epithelial cells. Free Radic Biol Med. 2007;42(3):363-70. doi: 10.1016/j.freeradbiomed.2006.11.005.




DOI: https://doi.org/10.22141/2224-0551.12.3.2017.104235

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 CHILD`S HEALTH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2018

 

 Яндекс.МетрикаSeo анализ сайта Рейтинг@Mail.ru